• fib Model Code for Concrete Structures (2020)

    +

  • fib President Stephen Foster

    fib President Stephen Foster

    fib President 2023-2024

  • The International Federation for Structural Concrete

    The International Federation for Structural Concrete

    A Bridge between Research and Practice



    The knowledge developped and shared by the fib (fib Bulletins, fib events, fib workshops, fib courses, etc.) is entirely the result of the volunteer work provided by the fib members.

    +

Experimental testing of helically confined high-strength concrete beams

N. Elbasha, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
M. N. S. Hadi, School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia

The strength and ductility of high-strength concrete (HSC) beams are enhanced through the application of helical reinforcement located in the compression region of the beams. The pitch of the helix is an important parameter controlling the level of strength and ductility enhancement of over-reinforced HSC beams. This paper presents an experimental investigation of the effect of helix pitch on the beam behaviour by testing five helically confined, full-scale beams. The helix pitches were 25, 50, 75, 100 and 160 mm. The cross-section of the beams was 200 300 mm, and with a length of 4 m and a clear span of 3.6 m subjected to four-point loading, with emphasis placed on the midspan deflection. The main results indicate that the helix had negligible effect when the helical pitch was 160 mm (helix diameter), the concrete cover spalling-off load increased linearly as the helical pitch increased, and the ultimate load decreased as the helical pitch increased. 

fib postal address

Ch. du Barrage, Station 18
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

News

Follow us on
           

Join the fib

Join the fib