• fib Model Code for Concrete Structures (2020)

    +

  • fib President Stephen Foster

    fib President Stephen Foster

    fib President 2023-2024

  • The International Federation for Structural Concrete

    The International Federation for Structural Concrete

    A Bridge between Research and Practice



    The knowledge developped and shared by the fib (fib Bulletins, fib events, fib workshops, fib courses, etc.) is entirely the result of the volunteer work provided by the fib members.

    +

Strength properties of HPC using binary, ternary and quaternary cementitious blends

K. Chinnaraju, Anna University, Chennai, Tamilnadu, India
K. Subramanian, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, India
S. R. R. Senthil Kumar, P.P.G. Institute of Technology, Saravanampatti, Coimbatore, Tamilnadu, India

Use of high-performance concrete for structural applications has grown substantially in recent years. This paper focuses on studying the effect of different supplementary cementitious materials (silica fume, fly ash, ground granulated blast furnace slag, and their combinations) on strength characteristics of high-performance concrete. An experimental test programme was conducted to study the effect of such admixtures on compressive strength at 7 days and 28 days, splitting tensile and flexural tensile strengths at 28 days for high-performance concrete. A set of 60 different concrete mixtures were cast and tested with different cement replacement levels (0, 10, 20 and 30% by weight of cement) by various combinations of fly ash and ground granulated blast furnace slag with silica fume as addition (0, 2.5, 5, 7.5, 10 and 12.5% by weight of cement) for each combination. Super plasticiser was added at different dosages to achieve a constant range of slump for desired workability with a constant water-binder (w/b) ratio. Based on the test results the influence of such admixtures on strength aspects were critically analysed and discussed. A regression analysis has been carried out to relate compressive strength to flexural and splitting tensile strengths. 

fib postal address

Ch. du Barrage, Station 18
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

News

Follow us on
           

Join the fib

Join the fib