Contents

Forewore	d	i		
Scope		1		
1. Introduction				
1.1 Past	, Present and Future of strut-and-tie and stress field models	2		
1.2 Application of stress fields and strut-and-tie models				
1.2.1	Design and assessment of structures	5		
1.2.2	Design for new structures	6		
1.2.3	Assessment of existing structures	10		
1.2.4	Considerations for retrofitting	12		
2. Gei	neral considerations on stress fields and			
stru	it-and-tie models	14		
2.1 Stre	ss fields as a lower-bound solution of limit analysis	14		
	lication of limit analysis to structural concrete	14		
	lization of material response	15		
2.3.1	Concrete	15		
2.3.2	2D Reinforced concrete	20		
2.4 Cor	2.4 Constitutive relations			
2.4.1	Concrete	22		
2.4.2	Reinforcement	23		
2.4.3	Tension stiffening	24		
2.4.4	Anchorage of reinforcement	26		
2.5 Lim	2.5 Limits of applicability			
2.5.1	General considerations	27		
2.5.2	Minimum reinforcement	27		
2.5.3	Minimum inclination of the compression field	28		
2.5.4	Deformation capacity	28		
2.5.5	SLS response	29		
	ety factor format	29		
2.6.1	Partial safety factor	29		
2.6.2	Use of other safety formats	30		
	e of the Levels-of-Approximation approach			
	lesign with stress fields and strut-and-tie models	31		
3.1 Intro	oduction	31		
3.2 Leve	el-of-Approximation I	32		
3.3 Level–of-Approximation II				

	3.4 Leve	I-of-Approximation III	33	
3.5 Level-of-Approximation IV				
	3.6 Sumr	nary	34	
		3.7 Example: Simply Supported Beam with Two Point Loads		
	3.7.1	Geometry, Loads and Bending Reinforcement	35 35	
	3.7.2	Level of Approximation I	36	
	3.7.3	Level of Approximation II	38	
	3.7.4	Level of Approximation III	41	
	3.7.5	Level of Approximation IV	42	
	3.7.6	Final considerations	43	
4	. Equi	librium-based models	44	
	4.1 Intro	duction	44	
	4.2 Com	plex strut-and-tie models as a combination of simple models	46	
	4.3 Basic	strut-and-tie and stress field models	48	
	4.3.1	Introduction	48	
	4.3.2	Deep beam with uniform loading	48	
	4.3.3	Deep Beam with uniform suspended loading	52	
	4.3.4	Deep beam / corbels with suspended point loads	55	
	4.3.5	Continuous Deep Beam models	57	
	4.3.6	Dapped-end beam / re-entrant corners	63	
	4.3.7	Spreading of point loads / bottle effect	66	
	4.3.8	Point load near support	70	
	4.3.9	Final Remarks – Practical Rules	71	
5	. Prin	ciples of computer modelling	75	
	5.1 Introduction		75	
	5.2 Com	patibility-based Stress field – Finite element method	75	
	5.2.1	Introduction	75	
	5.2.2	Finite elements	77	
	5.2.3	Mesh topology considerations	80	
	5.2.4	Additional considerations	82	
	5.2.5	Interpretation of results	84	
	5.2.6	Example	84	
	5.3 Finite	e Element Limit Analysis of Reinforced Concrete Structures	90	
	5.3.1	Introduction	90	
	5.3.2	Lower bound optimisation problem	91	
	5.3.3	Equilibrium finite elements for analysis of plane stress problems	93	
	5.3.4	Yield criterion for plane stress states	95	
	5.3.5	Examples	97	
	5.3.6	Discussion and concluding remarks	101	

5.4 Ada	aptive Stress Field Method	103
5.4.1	Introduction	103
5.4.2	Formulation	103
5.4.3	Compression Stress Fields	105
5.4.4	Tension Stress Fields	107
5.4.5	Test Example	109
5.4.6	Application of the Adaptive Stress Field method to a deep beam test	111
5.5 Stri	nger-Panel Models	115
5.5.1	Introduction	115
5.5.2	Concept of the Stringer-Panel Model	116
5.5.3	Dimensioning the stringers, panels and nodes	120
5.5.4	Dapped beam end	121
5.5.5	Deviating columns in building	127
5.5.6	Building wall with opening	130
5.5.7	Outlook	141
6. Pra	ctical examples	144
6.1 Use	e of strut-and-tie models and stress fields	
	assessment of existing critical structures	144
	e of strut-and-tie models and stress fields for	
	ceptual design of new structures	147
	plications to the assessment of a bridge	150
	re Cruz Viaduct	153
6.4.1	Description of structure	153
6.4.2		155
6.4.3	LoA II Model	157
6.4.4	LoA III Model	158
6.4.5		160
6.5 Ass	essment of a dapped-end beam at ultimate	
	serviceability limit states	160
6.5.1	Verification at ULS	162
6.5.2	Verification at SLS	163
6.6 Det	ailed assessment of an existing element	165
6.6.1	Context and motivation	165
6.6.2	Problem description	166
6.6.3	LoAI	168
6.6.4	LoA II	169
6.6.5	LoA III	170
6.6.6	In-situ beam test	171
6.6.7	Conclusion	173

7. Special topics			174		
7.1 Effect of load reversals			174		
	7.1.1	Load reversals	174		
	7.1.2	Models for deep girders and short coupling beams	175		
	7.1.3	Shear failures at low ductility levels	180		
	7.1.4	Shear failures at high ductility levels	184		
	7.1.5	Comparisons with test database	186		
	7.1.6	Summary	188		
7.2 3D models: general examples		189			
	7.2.1	Introduction	189		
	7.2.2	3D strut-and-tie models	190		
	7.2.3	Example of application of 3D strut-and-tie models: foundation of a wind tower turbine	193		
	7.2.4	3D stress field models	198		
	7.2.5	Design example of a four-pile cap	201		
	7.2.6	Conclusions	206		
8.	Con	clusions and outlook	208		
8.1 Conclusions		208			
8.2	2 Outl	ook	209		
9.	Refe	erences	210		
Ch	napter	1	210		
Chapter 2 Chapter 3 Chapter 4			212		
			214		
			215		
Ch	215				
	219				
	Chapter 6 Chapter 7				
			220		
10.			223		
11. Definitions			226		