Contents

Foreword ii

1. Introduction 1
 1.1 Background 1
 1.2 What is a Tall Building? 1
 1.3 The Application of Precast Concrete in Tall Buildings 3

2. Benefits of Precast Concrete in Tall Buildings 5
 2.1 General Project and Design Benefits 5
 2.2 Quality and Material Benefits 13
 2.3 Construction Site Benefits 16

3. Integration of Precast Concrete into Mixed Construction 20
 3.1 Types of Mixed Construction 20
 3.2 Precast Concrete Mixed with Insitu Concrete 21
 3.2.1 Slipformed cores with precast concrete stairs and landings 21
 3.2.2 Insitu cores with precast columns, beams, and slabs 22
 3.2.3 Precast columns and walls with insitu concrete floors 24
 3.2.4 Precast cores with insitu concrete floors 26
 3.2.5 Composite precast and insitu concrete floors 28
 3.3 Precast Concrete Mixed with Structural Steelwork 30
 3.3.1 Precast floor slabs with steel beams 30
 3.3.2 Precast concrete cores with steel frames 32
 3.4 Other Precast Concrete Components in Mixed Construction 33
 3.4.1 Precast concrete facades and claddings 33
 3.4.2 Precast concrete in basement construction 33
 3.4.3 Precast concrete balconies 34
 3.4.4 Precast concrete bathroom pods 35
 3.5 Interaction with the Client’s Design Team 36

4. Precast Concrete Structural Systems 39
 4.1 Introduction 39
 4.2 Moment Resisting Frames 41
 4.3 Wall Systems 44
 4.4 Robustness and the Avoidance of Progressive and Disproportionate Collapse 50
7. Precast Concrete Walls
 7.1 Introduction
 7.2 Design and Detailing
 7.2.1 General
 7.2.2 Structural shear walls
 7.2.3 Types of precast structural walls
 7.2.4 Structural connections
 7.3 Methods of Production
 7.3.1 General
 7.3.2 Solid wall
 7.3.3 Twin wall

8. Precast Concrete Stairs
 8.1 Introduction
 8.2 Design and Detailing
 8.2.1 General
 8.2.2 Support systems
 8.2.3 Dynamic analysis and vibrations
 8.2.4 Robustness and anchorage
 8.3 Methods of Production
 8.3.1 General
 8.3.2 Linear flights
 8.3.3 Helical or winding flights
 8.3.4 Sawtooth flights

9. Facades and Claddings
 9.1 Introduction
 9.2 Types of External Precast Panels
 9.3 Precast Panel Layouts
 9.4 Finishes and Textures.
 9.4.1 General
 9.4.2 Concrete colour
 9.4.3 Surface texture
 9.4.4 Facings
 9.4.5 Minimising the detrimental effects of weathering
9.5 Design and Detailing
 9.5.1 General
 9.5.2 Heat transfer control
 9.5.3 Air leakage control
 9.5.4 Condensation and moisture control
 9.5.5 Water leakage control
 9.5.6 Solar and ultraviolet radiation
 9.5.7 Noise insulation
 9.5.8 Fire resistance and control
 9.5.9 Structural design
 9.5.10 Durability

10. Precast Concrete in Seismic Zones
 10.1 Introduction
 10.2 Seismic Force Resisting Systems
 10.3 Precast Concrete Elements and their Connections
 10.3.1 General
 10.3.2 Emulative systems
 10.3.3 Non emulative systems
 10.4 Lateral Diaphragms
 10.4.1 General
 10.4.2 Developments in diaphragm design in the United States

11. Construction
 11.1 Introduction
 11.2 Site Configuration and Layout
 11.3 Precast Shape and Weight
 11.4 Connection Details
 11.5 Temporary Element and Building Stability
 11.6 Vertical and Horizontal Transport of Precast Elements
 11.7 External Finishes
12 Case Studies

12.1	Introduction	190
12.2	Bella Sky Hotel, Copenhagen, Denmark	191
12.3	Dexia Tower, Brussels, Belgium	193
12.4	Breaker Tower, Bahrain	195
12.5	Urban Dock Park City Toyosu, Japan	198
12.6	Deux Tours, Tokyo, Japan	200
12.7	Tampere Tower Hotel, Helsinki, Finland	202
12.8	BMX, Parcel A, Parque de Cidade, Sao Paulo, Brazil	204
12.9	Conjunto Paragon, Santa Fe, Mexico	207
12.10	Northwestern Memorial Hospital, Chicago, Illinois, USA	209
12.11	Erasmus Medical Centre, Rotterdam, The Netherlands	211
12.12	The Paramount, San Francisco, California, USA	213
12.13	Premier Tower, Melbourne, Australia	216
12.14	Australia 108, Melbourne, Australia	219
12.15	Seismic Resistant Office Structure, Shanghai, China	221
12.16	Torre de Cristal, Madrid, Spain	223

References 225