Contents

Foreword i
Preface 1
1. Hydrophobic impregnation 2
 1.1 Foreword 2
 1.2 Basics 3
 1.2.1 When to adopt this method? 3
 1.2.2 Materials 3
 1.2.3 Application techniques 4
 1.3 Stakeholders’ roles and qualifications 5
 1.3.1 Owner 5
 1.3.2 Designer 5
 1.3.3 Contractor 5
 1.3.4 User 6
 1.4 Design procedure 6
 1.4.1 Assessment of present conditions (existing concrete surface) 6
 1.4.2 Service life 6
 1.4.3 Codes and standards and other relevant references 7
 1.4.4 Design assumptions 7
 1.4.5 Supporting documents 8
 1.4.6 Design procedure 8
 1.5 Execution 9
 1.5.1 Preparatory works 9
 1.5.2 System trials 9
 1.5.3 Execution procedure 9
 1.5.4 Finishing 9
 1.6 Quality control 10
 1.6.1 Quality control of materials 10
 1.6.2 Quality control before intervention 10
 1.6.3 Quality control during intervention 10
 1.6.4 Quality control after intervention 10
 1.6.5 Health and safety 11
 1.7 Monitoring and maintenance 11
 1.7.1 Monitoring 11
 1.7.2 Maintenance 11
 1.7.3 Post-intervention documentation 11
1. Case study
 1.1 Description of the structure
 1.2 Description of the intervention project
 1.3 Description of the intervention works

2. Coating of concrete surfaces
 2.1 Foreword
 2.2 Basics
 2.2.1 When to adopt this method
 2.2.2 Materials and systems
 2.2.3 Techniques
 2.2.4 Equipment
 2.3 Stakeholders’ roles and qualifications
 2.3.1 Owner
 2.3.2 Designer
 2.3.3 Contractor
 2.3.4 User
 2.4 Design
 2.4.1 Assessment of existing conditions
 2.4.2 Service life
 2.4.3 Codes and standards and other relevant references
 2.4.4 Design assumptions
 2.4.5 Design procedure
 2.4.6 Supporting documents
 2.5 Execution
 2.5.1 Preparatory works
 2.5.2 System trials
 2.5.3 Execution procedure
 2.5.4 Finishing
 2.6 Quality control
 2.6.1 Quality control of materials
 2.6.2 Quality control before intervention
 2.6.3 Quality control during intervention
 2.6.4 Quality control after intervention
 2.7 Monitoring and maintenance
 2.7.1 Monitoring
 2.7.2 Maintenance
 2.7.3 Post-intervention documentation
2.8 Case study
 2.8.1 Description of the structure 28
 2.8.2 Inspection highlights 29
 2.8.3 Description of the intervention project 29
 2.8.4 Description of the intervention works 30
 2.8.5 Description of maintenance operations 31
 2.8.6 Concluding remarks 32

3. Application of membranes 33
 3.1 Foreword 33
 3.2 Basics 34
 3.2.1 When to adopt this method 34
 3.2.2 Materials and systems 35
 3.2.3 Techniques 40
 3.2.4 Equipment and tools 40
 3.3 Stakeholders’ roles and qualifications 41
 3.3.1 Owner 41
 3.3.2 Designer 41
 3.3.3 Contractor 42
 3.3.4 User 42
 3.4 Design 42
 3.4.1 Assessment of existing conditions 42
 3.4.2 Service life 43
 3.4.3 Reliability requirements 43
 3.4.4 Codes and standards and other relevant references 43
 3.4.5 Design assumptions 44
 3.4.6 Design procedure 44
 3.4.7 Supporting documents 45
 3.5 Execution 45
 3.5.1 Preparatory works 45
 3.5.2 System trials 46
 3.5.3 Execution procedure 46
 3.5.4 Finishing 47
 3.6 Quality control 47
 3.6.1 Quality control of materials 48
 3.6.2 Quality control before intervention 48
 3.6.3 Quality control during intervention 48
 3.6.4 Quality control after intervention 49
3.7 Monitoring and maintenance
 3.7.1 Monitoring
 3.7.2 Maintenance
 3.7.3 Post-intervention documentation

4. Corrosion inhibitors for steel rebars
 4.1 Foreword
 4.2 Basics
 4.2.1 When to adopt this method
 4.2.2 Materials and systems
 4.2.3 Techniques
 4.2.4 Equipment
 4.3 Stakeholders’ roles and qualifications
 4.3.1 Owner
 4.3.2 Designer
 4.3.3 Contractor
 4.3.4 User
 4.4 Design
 4.4.1 Assessment of existing conditions
 4.4.2 Service life
 4.4.3 Reliability requirements
 4.4.4 Codes and standards and other relevant references
 4.4.5 Design assumptions
 4.4.6 Design procedure
 4.4.7 Supporting documents
 4.5 Execution
 4.5.1 Preparatory works
 4.5.2 System trials
 4.5.3 Execution
 4.5.4 Finishing
 4.6 Quality control
 4.6.1 Quality controls of materials
 4.6.2 Quality control before intervention
 4.6.3 Quality control during intervention
 4.6.4 Quality control after intervention
 4.7 Monitoring and maintenance
 4.7.1 Monitoring
 4.7.2 Maintenance
 4.7.3 Post-intervention documentation
5.8 Case study 1
 5.8.1 Project Details
 5.8.2 Diagnosis
 5.8.3 Field Trial
 5.8.4 Design
 5.8.5 Key aspects of the work carried out
 5.8.6 Implementation of the ICCP system
 5.8.7 Results
 5.8.8 Special constraints
 5.8.9 Monitoring of the ICCP system:
 5.8.10 Reference:

5.9 Case study 2
 5.9.1 Project Details
 5.9.2 Reference

6. Realkalisation
 6.1 Foreword
 6.2 Basics
 6.2.1 When to adopt this method
 6.2.2 Materials and systems
 6.3 Stakeholders’ roles and qualifications
 6.3.1 Owner
 6.3.2 Designer
 6.3.3 Contractor
 6.4 Design
 6.4.1 Assessment of existing conditions
 6.4.2 Service life
 6.4.3 Codes and standards and other relevant references
 6.4.4 Design Procedure
 6.4.5 Supporting documents
 6.5 Execution
 6.5.1 Preparatory works
 6.5.2 Execution procedure
 6.5.3 Finishing
6.6 Quality control
 6.6.1 Quality control of materials
 6.6.2 Quality control before intervention
 6.6.3 Quality control during intervention
 6.6.4 Quality control after intervention

6.7 Monitoring & maintenance
 6.7.1 Monitoring
 6.7.2 Maintenance
 6.7.3 Post-intervention documentation

6.8 Case study 1
 6.8.1 Description of the structure
 6.8.2 Inspection highlights:
 6.8.3 Description of the intervention project:
 6.8.4 Description of the intervention works:
 6.8.5 Description of maintenance operations:

6.9 Case study 2
 6.9.1 Description of the structure
 6.9.2 Inspection highlights
 6.9.3 Description of the intervention project
 6.9.4 Description of the intervention works:
 6.9.5 Research works:

7. Chloride extraction/desalination
 7.1 Foreword
 7.2 Basics
 7.2.1 When to adopt this method
 7.2.2 Materials and systems
 7.3 Stakeholders’ roles and qualifications
 7.3.1 Owner
 7.3.2 Designer
 7.3.3 Contractor
 7.4 Design
 7.4.1 Assessment of existing conditions
 7.4.2 Service life
 7.4.3 Codes and standards and Other relevant references
 7.4.4 Design procedure
 7.4.5 Supporting documents
7.5 Execution
 7.5.1 Preparatory works
 7.5.2 Execution procedure
 7.5.3 Finishing

7.6 Quality control
 7.6.1 Quality control of materials
 7.6.2 Quality control before intervention
 7.6.3 Quality control during intervention
 7.6.4 Quality control after intervention

7.7 Monitoring and maintenance
 7.7.1 Monitoring
 7.7.2 Maintenance
 7.7.3 Post-intervention documentation

7.8 Case study 1
 7.8.1 Project Details

7.9 Case study 2
 7.9.1 Description of the structure
 7.9.2 Inspection highlights
 7.9.3 Description of the intervention project
 7.9.4 Description of the intervention works
 7.9.5 Description of maintenance operations

8. Patch-repair (hand-applied mortar)
 8.1 Foreword

8.2 Basics
 8.2.1 When to adopt this method
 8.2.2 Materials and systems
 8.2.3 Equipment

8.3 Stakeholders’ roles and qualifications
 8.3.1 Owner
 8.3.2 Designer
 8.3.3 Contractor
 8.3.4 User
8.4 Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.1 Assessment of existing conditions</td>
<td>150</td>
</tr>
<tr>
<td>8.4.2 Service life</td>
<td>150</td>
</tr>
<tr>
<td>8.4.3 Codes and standards and other relevant references</td>
<td>151</td>
</tr>
<tr>
<td>8.4.4 Design assumptions</td>
<td>152</td>
</tr>
<tr>
<td>8.4.5 Design procedure</td>
<td>153</td>
</tr>
<tr>
<td>8.4.6 Supporting documents</td>
<td>158</td>
</tr>
</tbody>
</table>

8.5 Execution

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.1 Preparation of existing concrete</td>
<td>159</td>
</tr>
<tr>
<td>8.5.2 System trials</td>
<td>159</td>
</tr>
<tr>
<td>8.5.3 Preparation of reinforcement</td>
<td>160</td>
</tr>
<tr>
<td>8.5.4 Application of repair materials</td>
<td>160</td>
</tr>
<tr>
<td>8.5.5 Finishing and curing</td>
<td>161</td>
</tr>
</tbody>
</table>

8.6 Quality control

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.1 Quality control of Materials</td>
<td>162</td>
</tr>
<tr>
<td>8.6.2 Quality control before intervention</td>
<td>162</td>
</tr>
<tr>
<td>8.6.3 Quality control during intervention</td>
<td>163</td>
</tr>
<tr>
<td>8.6.4 Quality control after intervention</td>
<td>163</td>
</tr>
</tbody>
</table>

8.7 Monitoring and maintenance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7.1 Monitoring</td>
<td>164</td>
</tr>
<tr>
<td>8.7.2 Maintenance</td>
<td>164</td>
</tr>
<tr>
<td>8.7.3 Post-intervention documentation</td>
<td>164</td>
</tr>
</tbody>
</table>

8.8 Case study

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8.1 Description of the structure</td>
<td>165</td>
</tr>
<tr>
<td>8.8.2 Inspection highlights</td>
<td>169</td>
</tr>
<tr>
<td>8.8.3 Assessment of the structure</td>
<td>171</td>
</tr>
<tr>
<td>8.8.4 Results of tests and investigations</td>
<td>172</td>
</tr>
<tr>
<td>8.8.5 Description of the intervention project</td>
<td>176</td>
</tr>
<tr>
<td>8.8.6 Description of the intervention works</td>
<td>176</td>
</tr>
</tbody>
</table>

9. Recasting (cast-in-place)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Foreword</td>
<td>179</td>
</tr>
<tr>
<td>9.2 Basics</td>
<td>179</td>
</tr>
<tr>
<td>9.2.1 When to adopt this method</td>
<td>179</td>
</tr>
<tr>
<td>9.2.2 Materials and systems</td>
<td>179</td>
</tr>
<tr>
<td>9.2.3 Equipment for preparing the substrate</td>
<td>181</td>
</tr>
<tr>
<td>9.2.4 Placement techniques</td>
<td>182</td>
</tr>
</tbody>
</table>
10.5 Execution 210
 10.5.1 Preparatory works 210
 10.5.2 Execution procedure 214
 10.5.3 Finishing 216
 10.5.4 Curing 217
10.6 Quality control 218
 10.6.1 Quality control of materials 218
 10.6.2 Quality control before intervention 218
 10.6.3 Quality control during intervention 219
 10.6.4 Quality control after intervention 220
10.7 Monitoring and maintenance 222
10.8 Case study 222
 10.8.1 Description of the structure 222
 10.8.2 Inspection highlights 224
 10.8.3 Description of the intervention project (1989/90) 228
 10.8.4 Description of the intervention works (1991/92) 229
 10.8.5 Monitoring 232
 10.8.6 Description of maintenance operations 235

11. Repair of prestress tendons through reinjection of grout 238
11.1 Foreword 238
11.2 Basics 238
 11.2.1 When to adopt this method 238
 11.2.2 Grout characteristics 239
 11.2.3 Techniques 240
 11.2.4 Grout behaviour principles during and after grouting 241
 11.2.5 Grouting devices and other required equipment 242
11.3 Stakeholders’ roles and qualifications 242
 11.3.1 Owner 242
 11.3.2 Designer 242
 11.3.3 Contractor 243
11.4 Design 243
 11.4.1 Assessment of existing conditions of grouted tendons 243
 11.4.2 Service life 243
 11.4.3 Reliability requirements 244
 11.4.4 Relevant references 244
 11.4.5 Design assumption 245
 11.4.6 Design procedure 245
 11.4.7 Supporting documents 246
11.5 Execution
 11.5.1 Preparatory works
 11.5.2 System trials
 11.5.3 Execution procedure
 11.5.4 Finishing
11.6 Quality control
 11.6.1 Quality control of materials
 11.6.2 Quality control during intervention
11.7 Monitoring and maintenance
 11.7.1 Monitoring
 11.7.2 Maintenance
 11.7.3 Post-intervention documentation
11.8 Case study
 11.8.1 Description of the structure
 11.8.2 Inspection highlights
 11.8.3 Description of the intervention project
12. Injection to seal cracks in concrete
 12.1 Forword
 12.2 Basics
 12.2.1 When to adopt this method
 12.2.2 Materials and systems
 12.2.3 Techniques & equipment
 12.3 Stakeholders’ roles and qualifications
 12.3.1 Owner
 12.3.2 Designer
 12.3.3 Contractor
 12.3.4 User
 12.4 Design
 12.4.1 Assessment of existing conditions
 12.4.2 Service life
 12.4.3 Reliability requirements
 12.4.4 Codes and standards and other relevants references
 12.4.5 Design assumptions
 12.4.6 Design procedure
 12.4.7 Supporting documents
12.5 Execution
 12.5.1 Preparatory works
 12.5.2 System trials
 12.5.3 Execution procedure
 12.5.4 Finishing

12.6 Quality control
 12.6.1 Quality control of materials
 12.6.2 Quality control before intervention
 12.6.3 Quality control during intervention
 12.6.4 Quality control after intervention

12.7 Monitoring and maintenance
 12.7.1 Monitoring
 12.7.2 Maintenance
 12.7.3 Post-intervention documentation

12.8 Case study
 12.8.1 Description of the structure:
 12.8.2 Inspection highlights
 12.8.3 Description of the intervention project: