Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>i</td>
</tr>
<tr>
<td>Editorial note</td>
<td>i</td>
</tr>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>1. RC jacketing</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Foreword</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Basics</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 When to adopt this method?</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Materials</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Techniques</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4 Equipment</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Stakeholders’ roles and qualifications</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Owner</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Designer</td>
<td>6</td>
</tr>
<tr>
<td>1.3.3 Contractor</td>
<td>6</td>
</tr>
<tr>
<td>1.3.4 User</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Design</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1 Assessment of present conditions</td>
<td>6</td>
</tr>
<tr>
<td>(existing concrete surface)</td>
<td>6</td>
</tr>
<tr>
<td>1.4.2 Design assumptions</td>
<td>7</td>
</tr>
<tr>
<td>1.4.3 Design procedure</td>
<td>8</td>
</tr>
<tr>
<td>1.4.4 Codes and other relevant references</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Detailing</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Execution</td>
<td>10</td>
</tr>
<tr>
<td>1.6.1 Preparatory works</td>
<td>10</td>
</tr>
<tr>
<td>1.6.2 Execution procedure</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Quality control and monitoring</td>
<td>13</td>
</tr>
<tr>
<td>1.8 Case study</td>
<td>13</td>
</tr>
<tr>
<td>1.8.1 Description of the structure</td>
<td>13</td>
</tr>
<tr>
<td>1.8.2 Inspection Highlights</td>
<td>14</td>
</tr>
<tr>
<td>1.8.3 Description of the intervention</td>
<td>17</td>
</tr>
<tr>
<td>methodology</td>
<td>17</td>
</tr>
<tr>
<td>1.8.4 Execution</td>
<td>18</td>
</tr>
<tr>
<td>1.8.5 Monitoring</td>
<td>20</td>
</tr>
</tbody>
</table>
2. FRP jacketing

2.1 Foreword

2.2 Basics

2.2.1 When to use this method

2.2.2 Materials

2.2.3 FRP jacketing Systems

2.3 Techniques

2.3.1 Basic FRP technique

2.3.2 Automated wrapping

2.3.3 Textile-reinforced mortar techniques (TRM) and Fabric Reinforced Cementitious Mortar (FRCM)

2.3.4 Prestressed jacketing

2.4 Personnel and equipment

2.4.1 Personnel

2.4.2 Equipment

2.5 Stakeholders’ roles and qualifications

2.5.1 Owner

2.5.2 Designer

2.5.3 Contractor

2.6 Design

2.6.1 Assessment of existing conditions

2.6.2 Codes and standards and other relevant references

2.6.3 Design procedure

2.7 Quality control

2.7.1 Quality control of materials

2.7.2 Quality control before intervention

2.7.3 Quality control of FRP Durability

2.7.4 Quality control during intervention

2.7.5 Quality control after intervention

2.8 Monitoring and maintenance

2.8.1 Monitoring

2.8.2 Maintenance

2.9 References
2.10 Case study 1
 2.10.1 Description of the structure 40
 2.10.2 Description of the intervention project 40
 2.10.3 Description of the strengthening procedure 40

2.11 Case study 2
 2.11.1 Description of the structure 43
 2.11.2 Bridge Capacity assessment 45
 2.11.3 Rehabilitation Intervention by using innovative materials 45

3. Steel jacketing 49
 3.1 Foreword 49
 3.2 Basics – Technique description 50
 3.2.1 When to adopt this method 50
 3.2.2 Techniques and materials 51
 3.2.3 Equipment 54
 3.3 Stakeholders’ roles and qualifications 54
 3.3.1 Owner 54
 3.3.2 Designer 55
 3.3.3 Contractor 55
 3.3.4 User 55
 3.4 Design 56
 3.4.1 Assessment of existing conditions 56
 3.4.2 Service life and reliability requirements 56
 3.4.3 Codes and standards and other relevant references 56
 3.4.4 Design assumptions 58
 3.4.5 Design procedure 58
 3.4.6 Supporting documents 65
 3.5 Execution 66
 3.5.1 Preparatory works 66
 3.5.2 Execution procedure 66
 3.5.3 Finishing 68
 3.6 Quality control 68
 3.6.1 Quality control of materials before intervention 68
 3.6.2 Quality control during intervention 68
 3.6.3 Quality control after intervention 69
 3.7 Monitoring and maintenance 69
 3.7.1 Monitoring 69
 3.7.2 Maintenance 69
 3.7.3 Post-intervention documentation 69
4.5 Execution
 4.5.1 Preparatory works
 4.5.2 System trials
 4.5.3 Execution procedure
4.6 Quality control
 4.6.1 Quality control of materials
 4.6.2 Quality control before intervention
 4.6.3 Quality control during intervention
 4.6.4 Quality control after intervention
4.7 Monitoring and maintenance
4.8 Case study
 4.8.1 Description of the structure
 4.8.2 Inspection highlights
 4.8.3 Description of the intervention project
 4.8.4 Description of the intervention works
 4.8.5 Description of maintenance operations
5. Concrete overlays
 5.1 Foreword
 5.2 Basics
 5.2.1 When to adopt this method
 5.2.2 Materials and systems
 5.2.3 Techniques
 5.2.4 Equipment
 5.3 Stakeholders’ roles and qualifications
 5.3.1 Owner
 5.3.2 Designer
 5.3.3 Contractor
 5.4 Design
 5.4.1 Assessment of existing conditions
 5.4.2 Service life
 5.4.3 Reliability requirements
 5.4.4 Codes and standards and other relevant references
 5.4.5 Design assumptions
 5.4.6 Design procedure
 5.5 Execution
 5.5.1 Preparatory works
 5.5.2 Execution procedure
 5.6 Quality control
 5.6.1 Quality control during intervention
6.7 Monitoring and maintenance
 6.7.1 Monitoring
 6.7.2 Maintenance
 6.7.3 Post-intervention documentation

6.8 Case study 1
 6.8.1 Description of the structure
 6.8.2 Inspection highlights
 6.8.3 Description of the intervention project
 6.8.4 Description of the intervention works
 6.8.5 Description of maintenance operations

6.9 Case study 2
 6.9.1 Description of the structure
 6.9.2 Inspection highlights
 6.9.3 Description of the intervention project
 6.9.4 Description of the intervention works
 6.9.5 Description of maintenance operations

6.10 Case study 3
 6.10.1 Description of the structure
 6.10.2 Inspection highlights
 6.10.3 Description of the intervention project
 6.10.4 Description of the intervention works

6.11 Case study 4
 6.11.1 Description of the structure
 6.11.2 Inspection highlights
 6.11.3 Description of the intervention project
 6.11.4 Description of the intervention works
 6.11.5 Description of maintenance operations

7. Externally applied or near surface mounted FRP
 7.1 Foreword
 7.2 Basics
 7.2.1 Applicability of these methods
 7.2.2 Materials and systems
 7.2.3 Techniques and strategies
 7.3 Design
 7.3.1 Assessment of existing conditions
 7.3.2 Codes and standards and other relevant references
 7.3.3 Design assumptions
 7.3.4 Design procedure
 7.3.5 Supporting documents
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 Stakeholders’ roles and qualifications</td>
<td>168</td>
</tr>
<tr>
<td>7.5 Execution</td>
<td>169</td>
</tr>
<tr>
<td>7.5.1 Equipment and tools</td>
<td>169</td>
</tr>
<tr>
<td>7.5.2 Preparatory works</td>
<td>169</td>
</tr>
<tr>
<td>7.5.3 Execution procedure</td>
<td>169</td>
</tr>
<tr>
<td>7.5.4 Finishing</td>
<td>182</td>
</tr>
<tr>
<td>7.6 Quality control</td>
<td>182</td>
</tr>
<tr>
<td>7.6.1 Quality control of materials</td>
<td>182</td>
</tr>
<tr>
<td>7.6.2 Quality control before application</td>
<td>182</td>
</tr>
<tr>
<td>7.6.3 Quality control during intervention</td>
<td>183</td>
</tr>
<tr>
<td>7.6.4 Quality control after intervention</td>
<td>183</td>
</tr>
<tr>
<td>7.7 Monitoring and maintenance</td>
<td>183</td>
</tr>
<tr>
<td>7.8 Case study 1</td>
<td>183</td>
</tr>
<tr>
<td>7.8.1 Description of the structure</td>
<td>184</td>
</tr>
<tr>
<td>7.8.2 Description of the intervention project</td>
<td>184</td>
</tr>
<tr>
<td>7.8.3 Description of the strengthening procedure</td>
<td>185</td>
</tr>
<tr>
<td>7.9 Case study 2</td>
<td>188</td>
</tr>
<tr>
<td>7.9.1 Description of the structure</td>
<td>188</td>
</tr>
<tr>
<td>7.9.2 Strengthening program</td>
<td>189</td>
</tr>
<tr>
<td>7.9.3 Description of the strengthening procedure</td>
<td>189</td>
</tr>
<tr>
<td>7.9.4 Flexural strengthening</td>
<td>192</td>
</tr>
<tr>
<td>7.9.5 Shear strengthening</td>
<td>192</td>
</tr>
<tr>
<td>8. Strengthening foundations with steel micro-piles</td>
<td>194</td>
</tr>
<tr>
<td>8.1 Foreword</td>
<td>194</td>
</tr>
<tr>
<td>8.2 Basics</td>
<td>194</td>
</tr>
<tr>
<td>8.2.1 When to adopt this method</td>
<td>194</td>
</tr>
<tr>
<td>8.2.2 Materials and systems</td>
<td>195</td>
</tr>
<tr>
<td>8.2.3 Techniques</td>
<td>196</td>
</tr>
<tr>
<td>8.2.4 Equipment</td>
<td>196</td>
</tr>
<tr>
<td>8.3 Stakeholders’ roles and qualifications</td>
<td>196</td>
</tr>
<tr>
<td>8.3.1 Owner</td>
<td>196</td>
</tr>
<tr>
<td>8.3.2 Designer</td>
<td>197</td>
</tr>
<tr>
<td>8.3.3 Contractor</td>
<td>197</td>
</tr>
<tr>
<td>8.3.4 User</td>
<td>197</td>
</tr>
<tr>
<td>8.4 Design</td>
<td>197</td>
</tr>
<tr>
<td>8.4.1 Assessment of existing conditions</td>
<td>197</td>
</tr>
<tr>
<td>8.4.2 Service life</td>
<td>198</td>
</tr>
<tr>
<td>8.4.3 Reliability requirements</td>
<td>198</td>
</tr>
</tbody>
</table>
9.3 Stakeholders’ roles and qualifications 213
 9.3.1 Owner 213
 9.3.2 Designer 214
 9.3.3 Contractor 214
 9.3.4 User 214

9.4 Design 214
 9.4.1 Assessment of existing conditions 214
 9.4.2 Service life 215
 9.4.3 Reliability requirements 215
 9.4.4 Codes and standards and other relevant references 215
 9.4.5 Design assumptions 217
 9.4.6 Design procedure 217
 9.4.7 Supporting documents 218

9.5 Execution 218
 9.5.1 Preparatory works 218
 9.5.2 System trials 219
 9.5.3 Execution procedure 219
 9.5.4 Finishing 220

9.6 Quality control 220
 9.6.1 Quality control of materials 220
 9.6.2 Quality control before intervention 220
 9.6.3 Quality control during intervention 221
 9.6.4 Quality control after intervention 221

9.7 Monitoring and maintenance 221
 9.7.1 Monitoring 221
 9.7.2 Maintenance 222
 9.7.3 Post-intervention documentation 222

9.8 Case study 222
 9.8.1 Description of the structure 223
 9.8.2 Inspection highlights 223
 9.8.3 Description of the intervention project 224
 9.8.4 Description of the intervention works 227
 9.8.5 Description of maintenance operations 229
 9.8.6 Monitoring and review 229
 9.8.7 Final remarks 230
10. Frame encasement (shear walls) 231
10.1 Foreword 231
10.2 Basics 231
 10.2.1 When to adopt this method 231
 10.2.2 Materials and systems 232
 10.2.3 Techniques 232
 10.2.4 Equipment 237
10.3 Stakeholders' roles and qualifications 237
 10.3.1 Owner 237
 10.3.2 Designer 238
 10.3.3 Contractor 238
 10.3.4 User 238
10.4 Design 238
 10.4.1 Assessment of existing conditions 238
 10.4.2 Service life and reliability requirements 239
 10.4.3 Codes and standards and other relevant references 239
 10.4.4 Design assumptions 240
 10.4.5 Design procedures 241
 10.4.6 Supporting documents 246
10.5 Execution 247
 10.5.1 Preparatory works 247
 10.5.2 System trials 247
 10.5.3 Execution procedure 247
 10.5.4 Finishing 248
10.6 Quality control 248
 10.6.1 Quality control of materials 248
 10.6.2 Quality control before intervention 248
 10.6.3 Quality control during intervention 249
 10.6.4 Quality control after intervention 249
10.7 Monitoring and maintenance 249
 10.7.1 Monitoring 249
 10.7.2 Maintenance 249
10.8 Case study 250
 10.8.1 Introduction 250
 10.8.2 Description of the structure 250
 10.8.3 Inspection highlights 250
 10.8.4 Description of the intervention project 251
10.8.5 Seismic retrofit 251
10.8.6 Calculations for new shear wall 252
10.8.7 Description of the frame encasement intervention works 262
10.8.8 References 263

11. External post-tensioning 264
11.1 Foreword 264
11.2 Basics 264
 11.2.1 When to adopt this method 264
 11.2.2 Prestressing elements 265
 11.2.3 Materials 266
 11.2.4 Prestressing equipment 267
11.3 Stakeholders’ roles and qualifications 268
 11.3.1 Owner 268
 11.3.2 Designer 268
 11.3.3 Contractor 268
11.4 Design 269
 11.4.1 Assessment of existing conditions 269
 11.4.2 Service life 269
 11.4.3 Reliability requirements 270
 11.4.4 Codes and standards and other relevant references 270
 11.4.5 Design assumptions 270
 11.4.6 Design procedure 271
 11.4.7 Supporting documents 272
11.5 Execution 273
 11.5.1 Preparatory works 273
 11.5.2 System trials 273
 11.5.3 Execution procedure 274
 11.5.4 Finishing 274
11.6 Quality control 274
 11.6.1 Quality control of materials 274
 11.6.2 Quality control before intervention 275
 11.6.3 Quality control during intervention 275
 11.6.4 Quality control after intervention 275
11.7 Monitoring and maintenance 275
 11.7.1 Monitoring 275
 11.7.2 Maintenance 276
 11.7.3 Post-intervention documentation 276
11.8 Case study
11.8.1 Introduction
11.8.2 Selection of post tensioning system
11.8.3 Execution of retrofitting work
11.8.4 Conclusions

12. Seismic protection techniques
12.1 Foreword
12.2 Part I – Buildings
 12.2.1 Base isolation
 12.2.2 Energy dissipation devices
12.3 Part II – Bridges
 12.3.1 Basics
 12.3.2 Design
 12.3.3 Execution
12.4 Part III – Buildings and bridges
 12.4.1 Quality control
 12.4.2 Monitoring and maintenance