Contents

Foreword	
Preface	
1. Introduction	3
1.1 Work scope and History	3
1.2 Basic assumptions	3
1.3 Overview of the main structural applications	4
1.3.1 General introduction on slabs	4
1.3.2 Slabs on grade	4
1.3.3 Slabs on piles	5
1.3.4 Road slabs on piles	5
1.3.5 Elevated slabs	6
1.3.6 Foundation slabs (underwater)	7
1.3.7 Building of wind turbine rafts	8
1.3.8 Retaining structures	8
1.3.9 Shell structures	10
1.3.10 Bridge decks	11
1.3.11 Shotcrete in tunnelling and mining	12
1.3.12 Tunnel segments	12
1.3.13 Tunnel inner linings	13
1.3.14 U shaped box-culvert and channel structures	14
1.3.15 Prestressed and HPFRC roof element	14
1.3.16 Precast pre-stressed beam	16
1.3.17 Precast façade panels	17
1.3.18 Precast tanks, containers, cabins, pipes, piles	18
1.3.19 Sheet piles	19
1.3.20 Earthquake resistant structures	20
2. Fundamentals	22
2.1 Introduction	22
2.2 Tensile behaviour	22
2.2.1 Fibre-matrix interaction	22
2.2.2 Bond	24
2.2.3 Multi-scale reinforcement concept	25
2.2.4 Selection of fibres for mix design	25
2.2.5 Tension softening and hardening FRC	26
2.2.6 Effects of volume, size and geometry	27
2.2.7 Material characteristic properties	28

2.2.8	Effective post-cracking tensile strength	29
2.3 Flex	kural behaviour	30
2.3.1	FRC members	30
2.3.2	Depth effect consideration in FRC member design	34
2.3.3	Interaction between FRC and conventional reinforcement	35
2.4 Stru	ictural behaviour	35
2.4.1	Effect of redundancy during rupture	35
2.4.2	Sectional and structural ductility, and structural analysis assumptions	36
2.4.3	Selecting material properties for design	37
3. Typ	bes of fibre and fibre materials	38
3.1 Gei	neral	38
3.2 Stee	el Fibres	40
3.2.1	Steel Wire Fibres	41
3.2.2	Cut Sheet Fibres	42
3.2.3	Splinter Fibres	42
3.3 Pol	ymeric fibres	43
3.3.1	Polypropylene (PP) Fibres	44
3.3.2	Polyacrylonitrile Fibres	44
3.3.3	Polyethylene Fibres	44
3.3.4	Aramid Fibres	44
3.3.5	Vinylal Fibres (PVA Fibres)	45
3.4 Ino	rganic and Mineral Fibres	45
3.4.1	Glass Fibres	45
3.4.2	Basalt Fibres	46
3.4.3	Carbon Fibres	47
3.4.4	Ceramic Fibres	47
3.4.5	Natural Fibres	47
4. Ide	ntification of mechanical properties	49
4.1 Intr	oduction	49
4.2 Bea	m bending tests	49
4.2.1	Beam test according to EN 14651	49
4.2.2	Beam bending test according to ASTM C1609	52
4.2.3	Tests for thin structural applications	52
4.2.4	Normative context	53
4.3 Un	axial tensile tests (RILEM TC-162-TDF recommendations)	54
4.3.1	Specimen preparation	54
4.3.2	Test setup	55
4.3.3	Interpretation of the results	56

	4.4 Rour	id panel test (ASTM C 1550)	57
	4.4.1	Test setup	57
	4.4.2	Interpretation of the results	58
	4.5 Othe	r indirect tensile tests	58
	4.5.1	Double Punching Test (Barcelona test)	58
	4.5.2	Double Edge Wedge Splitting Test	58
	4.5.3	Wedge Splitting Test	59
	4.6 Discu	ussion	59
	4.6.1	Beam bending tests	59
	4.6.2	Uniaxial tension tests	60
	4.6.3	Round panel test	60
	4.6.4	Alternative tests	61
5	. Back	ground of design approaches	62
	5.1 Class	ification	62
	5.2 Desig	gn by constitutive law (σ -w)	64
	5.2.1	Kinematic model, structural characteristic length and ultimate crack ope	ening 64
	5.2.2	The σ -w curve identification from standard bending tests	66
	5.2.3	The σ -w curve identification: theoretical vs. experimental results	70
	5.2.4	Reliability of structural behaviour prediction in bending	74
	5.3 Hybr	id solution: use of FRC and conventional reinforcement	76
	5.3.1	Material properties	77
	5.3.2	Constitutive laws	79
	5.3.3	Prediction of the sectional behaviour	82
	5.4 Influe	ence of the characteristic length on the sectional behaviour	
	of a k	pox-culvert	85
	5.4.1	Objectives	85
	5.4.2	Culvert geometry	85
	5.4.3	Material properties	86
	5.4.4	Constitutive laws	87
	5.4.5	Sectional behaviour: bending moment vs. curvature diagrams	94
	5.4.6	Conclusions	103
	5.5 Desig	gn by testing	103
	5.6 Strut	and Tie model	105
	5.6.1	Basic assumptions	105
	5.6.2	Bottle-shape strut	105
6	SLS	and ULS	109
	6.1 Intro	duction	109

6.2 UI	_S	110
6.2.	1 Bending and/or axial compression in linear members	110
6.2.2	2 Bending in slabs	115
6.2.	3 Shear	120
6.2.4	4 Torsion	124
6.2.	5 Punching	130
6.2.	6 Anchorages and splices	135
6.2.	7 Structural ductility	137
6.2.	3 Orientation and distribution factor <i>K</i>	138
6.2.	9 Redistribution factor K_{Rd}	139
6.3 SL	S	141
6.3.	1 Stresses	141
6.3.2	2 Cracking	141
6.3.	3 Deformability	150
6.3.4	4 Minimum reinforcement	150
6.3.	5 Long term behaviour of FRC elements	150
6.3.	5 Fatigue in FRC elements	158
7. D	urability of SFRC	162
7.1 Int	roduction	162
7.2 Ov	verview of corrosion mechanisms	164
7.3 Ca	rbonation-induced corrosion of steel fibres	166
7.4 Ch	loride-induced corrosion of steel fibres	166
7.5 Str	ay current-induced corrosion of steel fibres	168
7.6 Eff	ect of interfaces and microcracks	169
7.7 Su	mmary of corrosion aspects of SFRC	175
7.8 Sh	rinkage	175
7.9 Pe	rmeability and Diffusion	179
8. FF	C under fire conditions	180
8.1 Int	roduction	180
8 2 Fir		180
8.2	C 1 Fire ingress	180
8.2	 Influence of fibres on concrete exposed to fire 	180
8.2	Shalling	181
8.2.	4 Fire testing of fibre-reinforced concrete	187
8.2	5 Causes of spalling and influencing factors	183
8.2.	6 Measures against spalling	187
8.2	7 Function of fibres	189
8.2	3 Temperature penetration into fire-loaded concrete	193
0.2.0	s in period and interiod de concrete	199

8.2.9	Residual strength of fibre reinforced concrete	196
8.2.10	Other properties of PP-micro-fibre reinforced concrete	208
9. Tech	nological aspects	209
9.1 Intro	duction - general aspects	209
9.2 Fresh	concrete properties of FRC	209
9.2.1	Fibre effects on workability.	209
9.2.2	Effects of fibres on the concrete mix stability and homogeneity	210
9.2.3	Fibre clustering	211
9.2.4	Air content	211
9.3 Mix J	proportioning	212
9.3.1	General Recommendations. Materials selection	212
9.3.2	Aggregate grading. Effects on FRC properties	212
9.4 Mixii	ng process	213
9.4.1	Mixers and mixing	213
9.4.2	Introduction of fibres	213
9.4.3.	Mixing time	215
9.4.4	Transport	215
9.5 Casti	ng with FRC	215
9.5.1	Pouring	216
9.5.2	Compaction	216
9.5.3	Pumpability and spraying	217
9.5.4	Fibre orientation	217
9.6 Curir	ng	219
9.7 Surfa	ce finishing	219
9.8 Qual	ity Control: Sampling, Testing program, Analysis of results	220
9.8.1	Fibre quality control	220
9.8.2	Quality Control based on the residual strength properties assessn	nent 220
9.8.3	Quality Control based on the process control	221
9.8.4	Last considerations	223
10. FRC	for the structural rehabilitation of concrete and	
mase	onry structures	224
10.1	Introduction	224
10.2	Structural rehabilitation of reinforced concrete members	224
10.2.1	Flexural	224
10.2.2	Shear	230
10.2.3	Energy dissipation	234
10.3	Structural rehabilitation of masonry type structures	242

10.3.1	Flexural	242
10.3.2	Shear	246
10.3.3	Energy dissipation	249
10.4	Conclusions	251
11. FRC	for earthquake resistance	252
11.1	Introduction	252
11.1.1	General	252
11.1.2	Historical developments	252
11.1.3	Concrete matrix and fibre types	253
11.1.4	Mechanical properties	254
11.1.5	Objective and scope	254
11.2	Structural wall systems	255
11.2.1	Structural walls	256
11.2.2	Coupling beams	261
11.3	Beam-column joints and connections	266
11.4	Slab-column connections	270
11.5	Columns	272
11.6	Conclusions	279
12 Desi	gn examples	280
12.1	Introduction	280
12.2	Example 1a: Load-bearing capacity of a beam in	
	bending/shear (ULS)	281
12.2.1	Bending	281
12.2.2	Shear	288
12.3	Example 1b: Crack width calculation in bending (SLS)	289
12.3.1	Material properties:	289
12.4	Crack width calculation of a restrained wall (SLS)	292
12.4.1	Solicitation	292
12.4.2	Material properties	292
12.4.3	Geometry	292
12.5	Load-bearing capacity of a flat slab (ULS)	294
12.5.1	Design assumptions	295
12.5.2	Loads combinations	295
12.5.3	Ultimate limit states	295
12.5.4	Serviceability limit state	308
12.5.5	Robustness/Integrity reinforcement	314
12.6	Other references	315

13. Ultra	a High Performance Fibre Reinforced Concrete	316
13.1	Scope and definition	316
13.2	UHPFRC applications	318
13.2.1	Genesis	318
13.2.2	Exploration	319
13.2.3	Demonstration	321
13.2.4	Promising fields: Civil structures and bridges	323
13.2.5	Promising fields: Building components	324
13.2.6	Promising field: Repair	325
13.3	Conceptual design	326
13.3.1	Structural applications	326
13.3.2	Semi-structural components	328
13.3.3	From the concept to the design process	328
13.3.4	Sustainability design of U(V)HPFRC	329
13.4	Relationship between structural member performance	
	and test specimen performance	330
13.5	Constitutive relationships and design models	335
13.5.1	Behaviour in compression	335
13.5.2	Behaviour in tension	337
13.5.3	Multi-axial stresses	342
13.5.4	Design for bending and normal force	343
13.5.5	Design for shear	345
13.5.6	Design for torsion	348
13.5.7	Design for punching	350
13.5.8	Strut-and-tie models	350
13.5.9	Partially loaded areas	351
13.6	Crack width control	351
13.7	Time dependent deformations	353
13.7.1	Shrinkage	353
13.7.2	Creep	354
13.8	Durability	355
13.8.1	General – Microstructure	355
13.8.2	Durability characterisation resulting from laboratory investigation	356
13.8.3	Field experience	356
13.8.4	Design and specification related to durability	358
13.9	Fatigue	359
13.10	Fire and impact resistance	362
13.11	Composite structures	365

13.12	Detailing	367
13.13	Specification and execution: acceptance criteria,	
	quality management	370
13.13.1 From pioneer practice to standards		370
13.13.2	Specification	372
13.13.3	Conformity evaluation	375
13.13.4	Execution	377
13.13.5	Condition of successful UHPFRC projects realisation	379
Reference	S	381