Contents

Foreword	i		
Preface			
1. Introduction to post-tensioning concrete bridges	1		
1.1 Introduction	1		
1.2 Durability experiences and case study of post-tensioned bridg	-		
1.2.1 PT bridges in France	3		
1.2.2 PT bridges in the U.K.	6		
1.2.3 PT bridges in the U.S.A.	8		
1.2.4 PT bridges in Norway	10		
1.2.5 PT bridges in Brazil	11		
1.2.6 PT bridges in Germany	12		
1.2.7 PT bridges in Japan	14		
1.2.8 PT bridges in Switzerland	17		
1.2.9 PT bridges in Slovakia	18		
1.3 References	20		
2. Review of current practice of bridge management	22		
2.1 Structural inspections	22		
2.2 Numerical strength assessment	24		
2.3 Monitoring and management	24		
2.4 Future developments	24		
2.5 References	25		
3. Risk review, risk assessment and risk management	20		
for PT concrete bridges	26		
3.1 Introduction	26		
3.2 UK management process	27		
3.2.1 Risk review	27		
3.2.2 Structure risk assessment	29		
3.2.3 Risk management	32		
3.2.4 Prioritisation of inspections and repair works	33		
3.3 Risk analysis process in France	34		
	34		
3.3.2 Evaluation of hazard, vulnerability and issues	35		
3.3.3 Some details on this risk analysis	37		
3.3.2. Details on the assessment of the robustness/vulnerability	38		

	3.4 Cond	clusion	38
	3.5 Refe	rences	39
4	Insp	pection	40
	4.1 General		40
	4.1.1	Definition and objectives of inspection	40
	4.1.2	Preparation of inspection	40
	4.1.3	Inspection types	41
	4.1.4	Qualification of inspection personnel	41
	4.2 Poin	ts of attention in inspection	41
	4.2.1	Cracking	41
	4.2.2	Water management systems	45
	4.2.3	Deflections	45
	4.2.4	Concrete spalling	46
	4.2.5	Construction joints	46
	4.2.6	Bearings	46
	4.2.7	External tendons	47
	4.3 Reco	ord of inspection	47
	4.4 Refe	rences	47
5	. Inve	estigations	48
	5.1 Intro	duction	48
	-destructive testing methods for the diagnosis		
		restressing	49
	5.2.1	Usual or current techniques	49
	5.2.2	Monitoring of prestressing tendons	57
	5.2.3	Techniques under development	58
	5.3 Intru	sive or destructive methods	61
	5.3.1	Drilling holes to tendons	61
	5.3.2	Cutting access ports	62
	5.3.3	Grout cap removal	62
	5.3.4	Inspection of the tendon and grout condition, and collection of samples	62
	5.3.5	Measure of void volumes	64
	5.3.6	Laboratory investigations: metallography on steels mineralogical	01
	2.0.0	analysis of grout	64
	5.3.7	Core drills and percussion drills to evaluate concrete quality	
		of the structure, carbonation front, chloride ingress	64

	5.4 Dete	rmination of in-situ mechanical and structural characteristics	67		
	5.4.1	Measurement of prestress forces	67		
	5.4.2	Measurement of concrete stresses	69		
	5.4.3	Evaluation of the structural behaviour	70		
	5.5 Evaluation of the structural behaviour				
	5.5.1	Analysis and verification of the design	72		
	5.5.2	Proof load	73		
	5.6 Cond	lusion	73		
	5.7 Refe	rences	74		
6	. Inter	vention	77		
	6.1 Intro	duction	77		
	6.2 Deta	iled structural assessment	77		
	6.3 Moni	toring	77		
	6.4 Rem	ove load	78		
	6.5 Secu	ring the work area	78		
		air Methods	78		
	6.6.1	Void filling	78		
	6.6.2	Duct repair	79		
	6.6.3	Repair of inspection windows internal PT	80		
	6.6.4	Corrosion inhibitors	81		
	6.7 Repl	acing external tendons	82		
	6.8 Strengthening methods		83		
	6.8.1	Additional prestressing tendons	83		
	6.9 Rebu	uild	85		
	6.10 Ref	erences	85		
G	lossary		86		
A	ppendix	es	87		
	•••	x A - Tables and practical application of chapter 3	87		
		dix A.1 - A bridge specific example of a structure risk assessment	87		
	Append	dix A.2 - Two examples of risk ratings	102		
	Append	dix A.3 - Scores associated with general design factors as shown			
	in reference 3-2 Table 6				
	Appendix A.4 - Scores associated with material factors as shown				
	in reference 3-2 Table 7				
		dix A.5 - Example of a risk analysis for 15 bridges in accordance			
	with the	e Sétra methodology as reference 3-2	105		

Appendix B - Repair project reports	
Appendix B.1 Saint-Cloud Viaduct, Saint-Cloud - France, 2009	108
Appendix B.2 Strengthening of the Ružín bridge, Slovakia, 2017	109
Appendix B.3 A52 Clifton Bridge, Nottingham, UK, 2021	110
Appendix B.4 Agudim Viaduct, Leiria, Portugal, 2019	111
Appendix B.5 Pykes Creek, Victoria, Australia, 2018	112
Appendix C - Typical defect of bridges related to prestressing	
tendons	
Appendix C.1 Randomness of corrosion of tendons in beam and slab	
bridges (VIPP type)	113
Appendix C.2 Failure of external grouted tendons due to the presence	
of a white paste inside the duct.	115
Appendix C.3 Brittle failure of prestressing wires caused by a susceptibility	
to stress cracking corrosion.	117
Appendix D - <i>fib</i> bulletins, which are at least partially dealing with	
some issues concerning the management of post-tensioned bridges.	119