Contents

1 **Introduction**

1.1 General
1.2 Scope of the report
1.3 Advantages and disadvantages of incorporating precast and prestressed concrete in construction
1.4 Performance criteria
1.5 State of precast construction practice
1.6 Design approaches
1.7 Acceptance procedures

2 **Lessons from previous earthquakes**

2.1 Introduction
2.2 Performance of well-designed, well detailed precast and prestressed concrete structures
2.3 Improper design and detailing of ductile elements
2.4 Inadequate diaphragm action
2.5 Poor joint and connection details
2.6 Inadequate separation of non-structural elements
2.7 Inadequate separation between structures

3 **Precast construction concepts**

3.1 Types of elements in structural systems incorporating precast concrete
3.2 Types of connections between precast concrete elements in moment resisting frames and structural walls
3.3 Tolerances, fabrication and erection issues
3.4 Materials and quality assurance
3.5 Serviceability considerations

References
4 Design approaches

4.1 Performance objectives and limit states
(4.1.1 General – 4.1.2 Structural performance levels – 4.1.3 Non-structural performance levels – 4.1.4 Parameters and response measures associated with performance)

4.2 Representation of ground motion
(4.2.1 General – 4.2.2 Earthquake response spectra – 4.2.3 Earthquake time-history records)

4.3 Capacity design
(4.3.1 General – 4.3.2 Definition of capacity design – 4.3.3 Implementation and advantages of capacity design – 4.3.4 Levels of member strength)

4.4 Precast structural systems and expected response
(4.4.1 General – 4.4.2 Linear response – 4.4.3 Nonlinear response and nonlinear locations – 4.4.4 Equivalent monolithic systems – 4.4.5 Jointed hybrid, jointed rotating, and jointed rocking systems – 4.4.6 Force-displacement hysteretic response)

4.5 Detailing for ductility
(4.5.1 General – 4.5.2 Ductility provisions for overall structural behaviour – 4.5.3 Ductility provisions for members – 4.5.4 Ductility provisions for nonlinear systems – 4.5.5 Levels of ductility)

4.6 Demand versus capacity assessment
(4.6.1 General – 4.6.2 Comparison of force-based and displacement-based design – 4.6.3 Key differences between force-based and displacement-based design – 4.6.4 Applicability of force-based and displacement-based design – 4.6.5 Aspects of force-based design – 4.6.6 Recommendations for equivalent monolithic precast systems)

References

Appendix A Direct Displacement-Based Design
A.1 Overview
A.2 Notation
A.3 Procedure
A.4 Discussion of Displacement-Based Design
A.5 Recommendations for precast jointed and other systems
(A.5.1 Equivalent mode shape – A.5.2 Design displacement spectra – A.5.3 Distribution of base shear force – A.5.4 Analysis for member design actions)

5 Lateral force resisting systems

5.1 Introduction
5.2 Moment resisting frames
(5.2.1 Member partitioning – 5.2.2 Classification – 5.2.3 General seismic design approaches for buildings incorporating moment resisting frame systems – 5.2.4 Design practice)

5.3 Structural wall and dual systems
(5.3.1 Member partitioning – 5.3.2 Classification – 5.3.3 General design approaches for buildings incorporating structural wall systems – 5.3.4 Design practice – 5.3.5 Dual systems)

References

6 Diaphragms

6.1 Introduction
6.2 General concepts of diaphragm behaviour
(6.2.1 Diaphragm action – 6.2.2 Standard analysis methods for diaphragm design – 6.2.3 Floor diaphragm configurations and diaphragm force paths)
6.3 Precast floor systems
(6.3.1 General – 6.3.2 Precast concrete diaphragm construction methods – 6.3.3 Types of precast concrete floors)

6.4 Seating requirements for precast floor units
(6.4.1 General – 6.4.2 Recommended minimum seating dimensions – 6.4.3 Tolerances – 6.4.4 Displacement compatibility – 6.4.5 Detailing for loss of support)

6.5 Service load effects
(6.5.1 General – 6.5.2 Serviceability requirements – 6.5.3 Effect of service action on seismic behaviour)

6.6 Seismic design procedures for diaphragms
(6.6.1 General – 6.6.2 Code approaches for diaphragm design – 6.6.3 Code design forces – 6.6.4 In-plane force analysis method)

6.7 Diaphragm reinforcing
(6.7.1 General – 6.7.2 Mechanical connectors between precast elements – 6.7.3 Welded wire fabric – 6.7.4 Fibre concrete topping)

6.8 Seismic detailing of diaphragms
(6.8.1 General – 6.8.2 Detailing to accommodate localized displacements – 6.8.3 Diaphragm strength limit states – 6.8.4 Detailing for web reinforcement – 6.8.5 Detailing according to strut and tie model – 6.8.6 Force transfer to vertical system – 6.8.7 Transfer diaphragms)

6.9 Diaphragm stiffness considerations
(6.9.1 General – 6.9.2 Flexible diaphragms – 6.9.3 Stiffness of precast diaphragms – 6.9.4 Diaphragm stiffness calculations – 6.9.5 Current US code requirements for seismic drift)

6.10 Proposed seismic design approaches for precast diaphragms
(6.10.1 General – 6.10.2 Proposed alternative approaches to precast diaphragm design – 6.10.3 Diaphragm design seismic loads – 6.10.4 Flexible diaphragms)

References

7 Gravity load resisting systems

7.1 Introduction

7.2 Continuity
(7.2.1 General requirements – 7.2.2 Beams)

7.3 Beam supports
(7.3.1 General types – 7.3.2 General requirements – 7.3.3 Corbels – 7.3.4 Rocking and sliding supports – 7.3.5 Bearing – 7.3.6 Eccentricity and torsion)

7.4 Column connections
(7.4.1 General – 7.4.2 Load paths – 7.4.3 End region rotation – 7.4.4 Shear – 7.4.5 Flexure – 7.4.6 End bearing – 7.4.7 Typical bedding details – 7.4.8 Hinges)

7.5 Walls
(7.5.1 General – 7.5.2 Separation – 7.5.3 Gravity load resisting walls – 7.5.4 Walls not required to resist gravity loads)

References

8 Foundations

8.1 Introduction

8.2 Socket foundations
(8.2.1 General – 8.2.2 Design of socket connections)

8.3 Pile foundations
(8.3.1 Seismic design of prestressed/precast concrete piles – 8.3.2 Comparison between steam cured and autoclaved piles – 8.3.3 Flexural ductility enhancement of piles)

References
9 Modelling and analytical methods

9.1 Introduction 207

9.2 Alternative connection solutions 208
 (9.2.1 General – 9.2.2 Hybrid systems)

9.3 Alternative modelling approaches 210
 (9.3.1 Bonded or unbonded conditions – 9.3.2 Fiber element model – 9.3.3 Lumped
 plasticity model: moment-curvature/rotation – 9.3.4 Modelling of jointed wall systems)

9.4 System displacement compatibility issues 220
 (9.4.1 General – 9.4.2 Modelling of beam elongation effects – 9.4.3 Analytical modelling
 of precast diaphragms)

9.5 Analytical methods 226
 (9.5.1 General – 9.5.2 Alternative analytical methods – 9.5.3 Analytical methods and
 design procedures)

References 230

Appendix A Modelling of material behaviour
A.1 General 235
A.2 Prestressing steel 235
A.3 Bond stress-slip relationship 239

10 Miscellaneous elements and structures

10.1 Introduction 243
10.2 Shells and folded plates 243
10.3 Stairs 243
 (10.3.1 General – 10.3.2 Detailing the supports – 10.3.3 Reinforcement details)
10.4 Architectural cladding panels 246

References 247

11 Conclusions

11.1 General 249
11.2 State of the practice in various countries 249
11.3 Advantages and disadvantages of incorporating precast concrete in construction 249
11.4 Lessons learned from previous earthquakes 249
11.5 Types of connections between precast concrete elements used in the construction of moment resisting frames and structural walls
 (11.5.1 Broad categories of construction – 11.5.2 Equivalent monolithic systems – 11.5.3
 Jointed systems)
11.6 Tolerances and erection 251
11.7 Design approaches 251
11.8 Primary lateral force resisting systems 251
 (11.8.1 General – 11.8.2 Moment resisting frames – 11.8.3 Structural walls)
11.9 Diaphragms 253
11.10 Modelling and analytical methods 253
11.11 Gravity load resisting systems 253
11.12 Foundations 254
11.13 Miscellaneous 254
11.14 Summary 254