Contents

Introduction 1

1 Scope 1

2 Definitions and symbols 2
 2.1 Definitions 2
 2.2 Symbols 4

3 Design and detailing 5
 3.1 General 5
 (3.1.1 Redundancy of cable-stayed structures – 3.1.2 Fire, impact, vandalism –
 3.1.3 Replaceability of stay cables – 3.1.4 Transverse loads applied from stay cables
to the structure – 3.1.5 Bending stresses in stay cables
 3.2 Design / sizing of stay cables 8
 (3.2.1 Service conditions (SLS) – 3.2.2 Fatigue limit state (FLS) – 3.2.3 Ultimate
 limit state (ULS) – 3.2.4 Earthquakes – 3.2.5 Construction and cable replacement
 3.3 Detailing and lightning protection 12
 (3.3.1 Detailing – 3.3.2 Lightning protection)
 3.4 Saddles 17
 (3.4.1 General – 3.4.2 Transfer of differential stay cable forces – 3.4.3 Minimum
 radius of curvature of saddle pipe)
 3.5 Execution aspects 18
 (3.5.1 Stage-by-stage analysis – 3.5.2 Length adjustment capability of stay cables –
 3.5.3 Construction tolerances)
 3.6 Cable vibrations 19
 (3.6.1 General – 3.6.2 Special damping devices – 3.6.3 Cross ties)
 3.7 Inspection and maintenance 21

4 Functional requirements for stay cables 22
 4.1 Evolution of stay cable technology 22
 4.2 General requirements 22
 (4.2.1 General – 4.2.2 Durability design, corrosion protection)
 4.3 Requirements for the free length 24
 (4.3.1 Corrosion protection philosophy for tensile elements – 4.3.2 Protection
 philosophy for other materials – 4.3.3 Reference system for corrosion protection –
 4.3.4 Equivalent systems for corrosion protection – 4.3.5 Systems with lower
 corrosion protection – 4.3.6 Additional requirements)
 4.4 Requirements for the transition zones 28
 (4.4.1 Corrosion protection – 4.4.2 Stay pipe dilation – 4.4.3 Guide deviators –
 4.4.4 Damping of stay cables – 4.4.5 Anti-vandalism pipes)
 4.5 Requirements for anchorages 32
 (4.5.1 Types of stay cable anchorages – 4.5.2 Corrosion protection philosophy for
 mild steel anchorage components – 4.5.3 Additional requirements)
 4.6 Requirements for saddles 35
 (4.6.1 General – 4.6.2 Corrosion protection – 4.6.3 Saddle performance)
5 Materials: properties, requirements, testing

5.1 General

5.2 High tensile steel for tensile elements (prestressing steel)

5.2.1 General

5.2.2 Hot dipped metallically coated prestressing steel

5.3 Structural steel for anchorages, saddles, guide deviators and pipes

5.4 Stainless steel

5.5 Sheathing for prestressing strands

5.6 Filling materials

5.6.1 Soft filling materials

5.6.2 Hardening filling materials

5.7 Stay pipes and other pipes

5.7.1 General

5.7.2 Thermoplastic stay pipes

5.7.3 Steel stay pipes

5.7.4 Other pipes

5.8 Guide deviators

5.9 Damping devices

6 Testing of stay cable systems

6.1 General

6.2 Initial approval testing (qualification testing)

6.2.1 Anchorage fatigue and tensile testing

6.2.2 Saddle fatigue and tensile testing

6.2.3 Leak tightness testing

6.3 Suitability testing

6.4 Quality control testing

7 Installation

7.1 General

7.1.1 Quality management system

7.1.2 Qualification of personnel

7.1.3 Execution documents

7.2 Shipment and storage of components

7.3 Assembly and installation

7.4 Stressing and adjustment

7.5 Corrosion protection

8 Inspection and monitoring

8.1 General

8.2 Initial inspection

8.3 Routine inspection

8.4 Detailed inspection

8.5 Exceptional inspection

8.6 Monitoring

9 Maintenance, repair, replacement and strengthening

10 References and literature

10.1 References

10.2 Standards

10.3 Extended literature