Contents

1 Definitions and classification 1
 1.1 Range of applicability 1
 1.2 Classification by strength - concrete grades 1

2 Density 1

3 Strength 3
 3.1 Range of applicability 3
 3.2 Compressive strength 3
 (3.2.1 Parameters affecting compressive strength – 3.2.2 Determination of the compressive strength)
 3.3 Tensile strength and fracture properties 5
 (3.3.1 Tensile strength – 3.3.2 Fracture energy)
 3.4 Strength under multiaxial states of stress 17
 (3.4.1 Basic principles – 3.4.2 Biaxial stress combinations – 3.4.3 Triaxial compression and tension – 3.4.4 Partial area loading)

4 Stress and strain 23
 4.1 Range of application 23
 4.2 Modulus of elasticity 23
 4.3 Poisson’s ratio 25
 4.4 Stress-strain relations for short-term loading 25
 (4.4.1 Compression – 4.4.2 Tension – 4.4.3 Multiaxial states of stress)
 4.5 Shear friction behaviour in cracks 33
 (4.5.1 Introduction – 4.5.2 The shear friction principle – 4.5.3 Shear friction across cracks in HPC – 4.5.4 Ultimate shear friction capacity of cracks in reinforced HPC)
 4.6 Rotation and bending capacity 39

5 Stress and strain rate effects – impact 43
 5.1 Range of applicability 43
 5.2 Compressive strength 43
 5.3 Tensile strength and fracture properties 45
 (5.3.1 Tensile strength – 5.3.2 Fracture energy)
 5.4 Modulus of elasticity 46
 5.5 Stress-strain relation 47

6 Time effects 49
 6.1 Development of strength with time 49
 (6.1.1 Development of the compressive strength – 6.1.2 Development of the tensile strength)
 6.2 Strength under sustained loads 55
 (6.2.1 Long-term compression tests – 6.2.2 Long-term tensile tests – 6.2.3 Damage mechanisms and failure under sustained loads – 6.2.4 Calculation methods)
 6.3 Development of the modulus of elasticity with time 68
 6.4 Creep and shrinkage 69
 (6.4.1 Introduction – 6.4.2 Definitions and general considerations – 6.4.3 Shrinkage – 6.4.4 Creep – 6.4.5 Closing considerations)
Fatigue

7.1 Introduction

7.2 Experimental investigations

- 7.2.1 Plain concrete in compression
- 7.2.2 Plain concrete in tension
- 7.2.3 Fracture mechanical fatigue tests
- 7.2.4 Conclusions from experimental tests

7.3 Phenomenological behaviour of HPC under fatigue loading

7.4 Modelling the fatigue behaviour of HPC

- 7.4.1 Models for compressive fatigue behaviour
- 7.4.2 Models for tensile fatigue behaviour

7.5 Constitutive relations and fatigue treatment in codes

7.6 Conclusions

7.7 Acknowledgment

Temperature effects

8.1 Range of application

8.2 Maturity

8.3 Thermal expansion

8.4 Mechanical properties

- 8.4.1 Compressive strength
- 8.4.2 Tensile strength and modulus of elasticity

Transport of water, vapour and chloride in hardened concrete

9.1 Introduction

9.2 Parameters affecting water, vapour and chloride transport in HPC

9.3 Constitutive laws for transport of water, vapour and chloride

9.4 Conclusions

References