Contents

1 **Introduction** 1
 1.1 Preamble 1
 1.2 Notation 2
 1.3 Sample applications 2
 (1.3.1 Kimberley–Clark warehouse – 1.3.2 Sleipner A offshore platform – 1.3.3 Frame corner – 1.3.4 Base slabs in LNG storage tank)
 1.4 The question of accuracy (1.4.1 – Reasons for caution) 20
 1.5 Challenges remaining 27
 1.6 Objectives 29
 1.7 Scope of report 30
 1.8 References 30

2 **Design using linear stress analysis** 33
 2.1 Introduction 33
 2.2 Membrane structures 34
 (2.2.1 Notation – 2.2.2 General – 2.2.3 Reinforcement in one direction – 2.2.4 Isotropically reinforced panels – 2.2.5 The general solution – 2.2.6 Some comments on the angle \(\theta \) – 2.2.7 The design concrete compression strength, \(f_{cd} \) – 2.2.8 Example – Design of a reinforced concrete squat shear wall)
 2.3 Slabs and shells 52
 (2.3.1 General – 2.3.2 Stress resultants – 2.3.3 Equilibrium, stress transformation and boundary conditions for slabs – 2.3.4 Normal moment yield criterion for slabs – 2.3.5 Sandwich model for the dimensioning of shell elements – 2.3.6 Dimensioning of slab and shell elements in design practice – 2.3.7 Example 1 – 2.3.8 Example 2)
 2.4 3D solid modelling 70
 (2.4.1 Introduction – 2.4.2 Background – 2.4.3 Application to reinforced concrete – 2.4.4 Reinforcement dimensioning for 3D stresses – example 1 – 2.4.5 Reinforcement dimensioning for 3D stresses – example 2)
 2.5 References 78

3 **Essential nonlinear modelling concepts** 83
 3.1 Introduction 83
 3.2 Nonlinear concrete behaviour 84
 (3.2.1 Concrete in compression – 3.2.2 Concrete in tension – 3.2.3 Modelling of tension stiffening – 3.2.4 Modelling of concrete cracks – 3.2.5 Modelling of reinforcement)
 3.3 Nonlinear concrete modelling framework 98
 (3.3.1 Elasticity – 3.3.2 Plasticity – 3.3.3 Damage – 3.3.4 Mixed models – 3.3.5 Discrete modelling frameworks)
 3.4 Solution methods 102
 (3.4.1 Newton–Raphson method – 3.4.2 Modified Newton–Raphson method)
 3.5 Precision of nonlinear concrete FE analyses 104
 3.6 Safety and reliability 105
 3.7 Statistical analyses 114
 3.8 Concluding remarks 115
 3.9 References 115

4 **Analysis and design of frame structures using non–linear models** 121
 4.1 Introduction 121
 4.2 Notation 122
4.3 Nonlinear models of frame elements
(4.3.1 Lumped versus distributed plasticity – 4.3.2 Distributed models –
4.3.3 Section models: fibre elements vs. strut-and-tie – 4.3.4 Modelling of
shear – 4.3.5 Modelling Bond Slip in Beams – 4.3.6 Analysis of a section)

4.4 Interpretation of results
(4.4.1 Localisation problems – 4.4.2 Physical characteristics of localised
failure in concrete – 4.4.3 Regularisation techniques for force-based frame
elements – 4.4.4 Practical considerations)

4.5 References

5 Analysis and design of surface and solid structures using non-linear models
5.1 Introduction
5.2 Notation
5.3 2D Structures with in-plane loading
5.4 Plate and shell structures (5.4.1 Layered elements)
5.5 Three dimensional solid structures
(5.5.1 Introduction – 5.5.2 Models based on non-linear elasticity –
5.5.3 Fracture-plasticity modelling – 5.5.4 Microplane model –
5.5.5 Examples of the application of 3D FE modeling)

5.6 References

6 Advanced modelling and analysis concepts
6.1 Introduction
6.2 Constitutive frameworks
(6.2.1 Non-linear elasticity – 6.2.2 Plasticity – 6.2.3 Continuum damage
mechanics – 6.2.4 Smeared crack models – 6.2.5 Microplane models)

6.3 Solution strategies
(6.3.1 Introduction – 6.3.2 Newton-Raphson method – 6.3.3 Modified
Newton-Raphson method – 6.3.4 Incremental displacement method –
6.3.5 The constant arc length method – 6.3.6 Line searches –
6.3.7 Convergence criteria – 6.3.8 Load-displacement incrementation)

6.4 Other issues
(6.4.1 Post peak response of compression elements – 6.4.2 Effects of ageing
and distress in concrete – 6.4.3 Effects of ageing and distress in reinforcing
steel – 6.4.4 Second order effects)

6.5 References

7 Benchmark tests and validation procedures
7.1 Introduction
7.2 Calibration and validation of NLFEA models
(7.2.1 Overview of model calibration and validation process – 7.2.2 Level 1:
model calibration with material properties – 7.2.3 Level 2: validation and
calibration with systematically arranged element-level benchmark tests –
7.2.4 Level 3: validation and calibration at structural level)

7.3 Selection of global safety factor

7.4 Other issues in the use and validation of NLFEA programs
(7.4.1 Problem definition and model selection – 7.4.2 Working within the
domain of the program’s capability)

7.5 Case 1: Design of a shear wall with openings
(7.5.1 Objective – 7.5.2 Level 1 calibration – 7.5.3 Level 2 and 3
validation – 7.5.4 Evaluation of global safety)

7.6 Case study II: design of simply supported deep beam
(7.6.1 Objective – 7.6.2 Calibration and validation of NLFEAP-1 –
7.6.3 Calibration and validation of NLFEAP-2 – 7.6.4 Analysis of deep
beam)
8 Strut-and-tie modelling 265
8.1 Introduction 265
8.2 Notation 266
8.3 Overview of the STM (8.3.1 Strut-and-tie models – 8.3.2 Components of strut-and-tie models – 8.3.3 Admissible strut-and-tie models)
8.4 STM design steps (8.4.1 Complications in STM design) 270
8.5 Some considerations in using the STM (8.5.1 Rules in defining D-regions – 8.5.2 Two- and three-dimensional D-regions – 8.5.3 Capacity of struts – 8.5.4 Uniqueness of strut-and-tie models – 8.5.5 Strain incompatibility of struts and ties – 8.5.6 Tension stiffening in ties – 8.5.7 Influence of tie anchorages – 8.5.8 Size, geometry, and strength of nodal zones – 8.5.9 Load redistribution and ductility requirements)
8.6 Computer-based STM 279
8.7 Modelling aspects using computer-based STM (8.7.1 Identifying strut-and-tie models – 8.7.2 Refining strut-and-tie models – 8.7.3 Other considerations – 8.7.4 Static indeterminacy of strut-and-tie models – 8.7.5 Procedures to solve statically indeterminate strut-and-tie models – 8.7.6 Dimensioning nodal regions)
8.8 Design example using computer-based tools (8.8.1 Problem statement – 8.8.2 Solution) 298
8.9 References 303
9 Special purpose design methods for surface structures 307
9.1 Introduction 307
9.2 Notation 307
9.3 Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads)
9.4 Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimization through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure)
9.5 Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 9.5.3 A three-step design procedure – 9.5.4 Example)
9.6 References 329
10 Concluding remarks 331
10.1 Introduction 331
10.2 Structural performance based design in practice 331
10.3 Benefits of non-linear modelling and analyses 333
10.4 Code provisions 335
10.5 Specification of design loads 335
10.6 Maintenance 336
10.7 References 337