Contents

1	Intro	oduction	1
	1.1	Preamble	1
	1.2	Notation	2
	1.3	Sample applications	2
		(1.3.1 Kimberley-Clark warehouse – 1.3.2 Sleipner A offshore platform – 1.3.3 Frame corner – 1.3.4 Base slabs in LNG storage tank)	
	1.4	The question of accuracy (1.4.1 – Reasons for caution)	20
	1.5	Challenges remaining	27
	1.6	Objectives	29
	1.7	Scope of report	30
	1.8	References	30
2	Desi	gn using linear stress analysis	33
	2.1	Introduction	33
	2.2	Membrane structures (2.2.1 Notation – 2.2.2 General – 2.2.3 Reinforcement in one direction – 2.2.4 Isotropically reinforced panels – 2.2.5 The general solution – 2.2.6 Some comments on the angle θ – 2.2.7 The design concrete compression strength, f_{cd} – 2.2.8 Example – Design of a reinforced concrete squat shear wall)	34
	2.3	Slabs and shells (2.3.1 General – 2.3.2 Stress resultants – 2.3.3 Equilibrium, stress transformation and boundary conditions for slabs – 2.3.4 Normal moment yield criterion for slabs – 2.3.5 Sandwich model for the dimensioning of shell elements – 2.3.6 Dimensioning of slab and shell elements in design practice – 2.3.7 Example 1 – 2.3.8 Example 2)	52
	2.4	3D solid modelling (2.4.1 Introduction – 2.4.2 Background – 2.4.3 Application to reinforced concrete – 2.4.4 Reinforcement dimensioning for 3D stresses – example 1 – 2.4.5 Reinforcement dimensioning for 3D stresses – example 2)	70
	2.5	References	78
3	Esse	ntial nonlinear modelling concepts	83
	3.1	Introduction	83
	3.2	Nonlinear concrete behaviour	84
		 (3.2.1 Concrete in compression – 3.2.2 Concrete in tension – 3.2.3 Modelling of tension stiffening – 3.2.4 Modelling of concrete cracks – 3.2.5 Modelling of reinforcement) 	
	3.3	Nonlinear concrete modelling framework (3.3.1 Elasticity – 3.3.2 Plasticity – 3.3.3 Damage – 3.3.4 Mixed models – 3.3.5 Discrete modelling frameworks)	98
	3.4	Solution methods (3.4.1 Newton-Raphson method – 3.4.2 Modified Newton-Raphson method)	102
	3.5	Precision of nonlinear concrete FE analyses	104
	3.6	Safety and reliability	105
	3.7	Statistical analyses	114
	3.8	Concluding remarks	115
	3.9	References	115
4	Ana	lysis and design of frame structures using non–linear models	121
	4.1	Introduction	121
	4.2	Notation	122

	4.3	Nonlinear models of frame elements (4.3.1 Lumped versus distributed plasticity – 4.3.2 Distributed models – 4.3.3 Section models: fibre elements vs. strut-and-tie – 4.3.4 Modelling of shear – 4.3.5 Modelling Bond Slip in Beams – 4.3.6 Analysis of a section)	123
	4.4	Interpretation of results $(4.4.1 \text{ Localisation problems} - 4.4.2 \text{ Physical characteristics of localised failure in concrete} - 4.4.3 Regularisation techniques for force-based frame elements - 4.4.4 Practical considerations)$	148
	4.5	References	160
5	Ana	lysis and design of surface and solid structures using non-linear models	165
	5.1	Introduction	165
	5.2	Notation	165
	5.3	2D Structures with in-plane loading	166
	5.4	Plate and shell structures (5.4.1 Layered elements)	170
	5.5	Three dimensional solid structures (5.5.1 Introduction – 5.5.2 Models based on non-linear elasticity – 5.5.3 Fracture-plasticity modelling – 5.5.4 Microplane model – 5.5.5 Examples of the application of 3D FE modeling)	173
	5.6	References	190
6	Adv	anced modelling and analysis concepts	195
	6.1	Introduction	195
	6.2	Constitutive frameworks (6.2.1 Non-linear elasticity – 6.2.2 Plasticity – 6.2.3 Continuum damage mechanics – 6.2.4 Smeared crack models – 6.2.5 Microplane models)	195
	6.3	Solution strategies	214
		(6.3.1 Introduction $- 6.3.2$ Newton-Raphson method $- 6.3.3$ Modified Newton-Raphson method $- 6.3.4$ Incremental displacement method $- 6.3.5$ The constant arc length method $- 6.3.6$ Line searches $- 6.3.7$ Convergence criteria $- 6.3.8$ Load-displacement incrementation)	
	6.4	Other issues	223
		(6.4.1 Post peak response of compression elements $-$ 6.4.2 Effects of ageing and distress in concrete $-$ 6.4.3 Effects of ageing and distress in reinforcing steel $-$ 6.4.4 Second order effects)	
	6.5	References	227
7	Benc	chmark tests and validation procedures	233
	7.1	Introduction	233
	7.2	Calibration and validation of NLFEA models (7.2.1 Overview of model calibration and validation process – 7.2.2 Level 1: model calibration with material properties – 7.2.3 Level 2: validation and calibration with systematically arranged element–level benchmark tests – 7.2.4 Level 3: validation and calibration at structural level)	234
	7.3	Selection of global safety factor	239
	7.4	Other issues in the use and validation of NLFEA programs (7.4.1 Problem definition and model selection – 7.4.2 Working within the domain of the program's capability)	241
	7.5	Case 1: Design of a shear wall with openings (7.5.1 Objective – 7.5.2 Level 1 calibration – 7.5.3 Level 2 and 3 validation – 7.5.4 Evaluation of global safety)	244
	7.6	Case study II: design of simply supported deep beam (7.6.1 Objective – 7.6.2 Calibration and validation of NLFEAP-1 – 7.6.3 Calibration and validation of NLFEAP-2 – 7.6.4 Analysis of deep beam)	250

	7.7	Summary and future trends in model validation	260
	7.8	Future trends in model validation	261
	7.9	References	263
8	Stru	t–and–tie modelling	265
	8.1	Introduction	265
	8.2	Notation	266
	8.3	Overview of the STM	267
		(8.3.1 Strut-and-tie models – 8.3.2 Components of strut-and-tie models – 8.3.3 Admissible strut-and-tie models)	
	8.4	STM design steps (8.4.1 Complications in STM design)	270
	8.5	Some considerations in using the STM	271
		(8.5.1 Rules in defining D-regions $-$ 8.5.2 Two- and three-dimensional D-regions $-$ 8.5.3 Capacity of struts $-$ 8.5.4 Uniqueness of strut-and-tie models $-$ 8.5.5 Strain incompatibility of struts and ties $-$ 8.5.6 Tension stiffening in ties $-$ 8.5.7 Influence of tie anchorages $-$ 8.5.8 Size, geometry, and strength of nodal zones $-$ 8.5.9 Load redistribution and ductility	
	06	requirements)	270
	8.6	Computer-based STM	279
	8.7	Modelling aspects using computer-based STM (8.7.1 Identifying strut-and-tie models – 8.7.2 Refining strut-and-tie models – 8.7.3 Other considerations – 8.7.4 Static indeterminacy of strut-and-tie models – 8.7.5 Procedures to solve statically indeterminate strut-and-tie models – 8.7.6 Dimensioning nodal regions)	280
	8.8	Design example using computer-based tools (8.8.1 Problem statement – 8.8.2 Solution)	298
	8.9	References	303
9		References eial purpose design methods for surface structures	303 307
9	Spec 9.1	tial purpose design methods for surface structures Introduction	307 307
9	Spec 9.1 9.2	cial purpose design methods for surface structures Introduction Notation	307 307 307
9	Spec 9.1	tial purpose design methods for surface structures Introduction	307 307
9	Spec 9.1 9.2	Evaluation Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization –	307 307 307
9	Spec 9.1 9.2 9.3	 cial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending 	307 307 307 309
9	Spec 9.1 9.2 9.3	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 	307 307 307 309 318
9	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Cond 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in – plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 9.5.3 A three-step design procedure – 9.5.4 Example) References 	307 307 307 309 318 321
	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Cond 10.1 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 9.5.3 A three-step design procedure – 9.5.4 Example) References cluding remarks Introduction 	 307 307 307 309 318 321 329 331 331
	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Cone 10.1 10.2 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 9.5.3 A three-step design procedure – 9.5.4 Example) References cluding remarks Introduction Structural performance based design in practice	 307 307 309 318 321 329 331 331 331
	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Conc 10.1 10.2 10.3 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 9.5.3 A three-step design procedure – 9.5.4 Example) References cluding remarks Introduction Structural performance based design in practice Benefits of non-linear modelling and analyses 	 307 307 307 309 318 321 329 331 331 331 333
	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Cond 10.1 10.2 10.3 10.4 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in – plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear–walls: the stringer–panel approach (9.5.1 Linear–elastic version – 9.5.2 Non–linear version – 9.5.3 A three–step design procedure – 9.5.4 Example) References cluding remarks Introduction Structural performance based design in practice Benefits of non–linear modelling and analyses Code provisions	 307 307 307 309 318 321 329 331 331 333 335
	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Cond 10.1 10.2 10.3 10.4 10.5 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in-plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear-walls: the stringer-panel approach (9.5.1 Linear-elastic version – 9.5.2 Non-linear version – 9.5.3 A three-step design procedure – 9.5.4 Example) References cluding remarks Introduction Structural performance based design in practice Benefits of non-linear modelling and analyses Code provisions Specification of design loads	 307 307 307 309 318 321 329 331 331 331 335 335
	 Spec 9.1 9.2 9.3 9.4 9.5 9.6 Cond 10.1 10.2 10.3 10.4 10.5 10.6 	 bial purpose design methods for surface structures Introduction Notation Design of slabs and shear walls: perfect plastic approach (9.3.1 Slabs subjected to bending loads – 9.3.2 Ultimate load determination – 9.3.3 Failure mode determination – 9.3.4 Material optimization – 9.3.5 Plates subjected to in – plane loads) Design of slabs using the reinforcement field approach (9.4.1 Linear yield conditions for element nodal forces – 9.4.2 Material optimisation through stress redistribution – 9.4.3 Slab subjected to bending loads – 9.4.4 Dimensioning procedure) Design of shear–walls: the stringer–panel approach (9.5.1 Linear–elastic version – 9.5.2 Non–linear version – 9.5.3 A three–step design procedure – 9.5.4 Example) References cluding remarks Introduction Structural performance based design in practice Benefits of non–linear modelling and analyses Code provisions	 307 307 307 309 318 321 329 331 331 333 335