Contents

1 Introduction

2 Fire action and design approach

 2.1 Fire action
 2.2 Consequences of a fire on a concrete structure
 (2.2.1 Heating of the structure – 2.2.2 Modification of the material characteristics – 2.2.3 Main effects of indirect actions – 2.2.4 Thermal stresses)
 2.3 Design approach
 (2.3.1 Ultimate limit state – 2.3.2 Influence of time)

3 Sectional analysis

 3.1 Introduction
 3.2 Nonlinear analysis applied to R/C sections under fire
 (3.2.1 Tabulated data – 3.2.2 Reference-isotherm method (500°C isotherm) – 3.2.3 Zone method – 3.2.4 Exact method – Incremental-iterative procedure)
 3.3 Reference-isotherm method versus exact method
 3.4 An alternative method based on strain limitations
 3.5 The role of the thermal strains
 3.6 Conclusions

4 Structural behaviour of continuous beams and frames

 4.1 Introduction
 4.2 Modelling
 4.3 Parametric study
 (4.3.1 Parametric study of beams – 4.3.2 Parametric study of frames)
 4.4 Concluding remarks

5 Plastic analysis of continuous beams

 5.1 Introduction
 5.2 Use of plastic analysis
 5.3 Conclusions

6 Expertise and assessment of materials and structures after fire

 6.1 Residual material characteristics
 (6.1.1 Introduction – 6.1.2 Reinforcement – 6.1.3 Concrete – 6.1.4 Recent developments)
 6.2 Non-destructive test techniques for concrete
 (6.2.1 Introduction – 6.2.2 General remarks on concrete testing after a fire, 6.2.3 Core test – 6.2.4 Schmidt hammer test – 6.2.5 Ultrasonic pulse velocity test – 6.2.6 Windsor probe – 6.2.7 BRE internal fracture test and CAPO test – 6.2.8 Concrete colorimetry – 6.2.9 Thermoluminescence tests – 6.2.10 Carbonation test – 6.2.11 Chemical analysis – 6.2.12 X-Ray diffraction analysis (XRD) – 6.2.13 Chemo-physical and mechanical tests – 6.2.14 Drilling resistance)
 6.3 Concluding remarks

7 Post-fire investigation and repair of fire-damaged concrete structures

 7.1 Introduction
 7.2 Data collection
 7.3 Damage analysis
 (7.3.1 Concrete – 7.3.2 Reinforcing and prestressing steel)
7.4 Diagnosis
7.5 Damage classification
7.6 Repair criteria
7.7 Repair methods
7.8 Real fires
 (7.8.1 Warehouse in Ghent – 7.8.2 Library in Linköping – 7.8.3 Windsor building (Madrid)),
7.9 Repair of a pretensioned roof girder after a fire
 (7.9.1 Description of the building – 7.9.2 Temperature development during the fire – 7.9.3 Characteristics of the roof girder under static loads)

Appendices

A1 Beam-column-floor connections 135
 A1.1 Introduction 135
 (A1.1.1 General – A1.1.2 Literature review – A1.1.3 Connections and fire indirect effects)
 A1.2 Structural fire resistance 137
 (A1.2.1 Dowel connections)
 A1.3 Separating function 141

A2 Fastenings 143
 A2.1 Introduction 143
 A2.2 Behaviour of fasteners under fire 144

A3 Integrity of compartmentation 151
 A3.1 Introduction 151
 A3.2 Regulatory requirements and standard fire tests 151
 A3.3 Loadbearing capacity
 (A3.3.1 Floors – A3.3.2 Walls)
 A3.4 Integrity
 (A3.4.1 Floors and Walls)
 A3.5 Insulation
 (A3.5.1 Floors and Walls)
 A3.6 Results from standard tests 153
 A3.7 Results from natural fire tests 155

A4 Complete results of the parametric study on continuous beams and frames discussed in chapter 4 159