Contents

Preface to Chapter 5 iii

5 Design of durable concrete structures 1

5.1 Introduction 1

5.1.1 Background 1

5.1.2 Concrete – A family of materials 3

5.1.3 Why is durability important? 3

5.1.4 Previous experience – Reviews of the in-service performance of concrete structures 5

5.1.5 Creating durable concrete structures – The need to take a holistic view 10

5.1.6 Variations in concrete properties and the durability critical role of the cover concrete 13

5.1.7 Conceptual models for the deterioration caused by the corrosion of reinforcement 14

5.1.8 Through-life performance, whole-life cost and sustainability perspectives 16

5.1.9 Durability and service life design concepts: Definitions and terminology 16

5.1.10 Overview of approaches to service life design 23

5.1.11 Parallels between contemporary structural and probabilistic based service life design 29

5.2 Overview of the service life design, construction and through-life care process 30

5.2.1 Introduction 30

5.2.2 Client brief and definition of performance expectations 32

5.2.3 Environment aggressivity classification 33

5.2.4 Conceptual design for durability 34

5.2.5 Detailed design for durability 36

5.2.6 Codes and standards – Deemed-to-satisfy durability design 36

5.2.7 Probabilistic performance-based service life design 37

5.2.8 Project specifications – A client/owner’s tool 38

5.2.9 Execution of works 39

5.2.10 Through-life care/maintenance 40

5.3 Through-life performance, whole-life cost and sustainability 40

5.3.1 Introduction 40

5.3.2 Service life and whole-life cost issues 40

5.3.3 Wider societal sustainability perspective 48

5.3.4 Service life and sustainability considerations 50

5.4 Mechanisms that may cause deterioration or damage to concrete structures 52

5.4.1 Introduction 52

5.4.2 Overview of deterioration and damage mechanisms, excluding accidental actions 56

5.4.3 Role of water and moisture transport mechanisms 64

5.4.4 Physical deterioration and damage processes in concrete 66

5.4.5 Chemical deterioration processes in concrete 86

5.4.6 Biological deterioration processes in concrete 94

5.4.7 Corrosion of reinforcement 96

5.4.8 Deterioration mechanisms acting in combination 120

5.5 Some factors influencing the durability of concrete structures 121

5.5.1 Introduction 121

5.5.2 Geometrical form and architectural detailing of the structure 123

5.5.3 Cement type, mix design and concrete quality 131

5.5.4 Reinforcement type 133
5.5.5 Concrete cover 133
5.5.6 Cracking, crack width and crack orientation 137

5.6 Environmental aggressivity 147
5.6.1 Introduction 147
5.6.2 Moisture driven deterioration processes 148
5.6.3 Atmospheric induced deterioration 150
5.6.4 Temperature induced effects 151
5.6.5 Classification of environmental exposure 152

5.7 Recommendations made in some standards and codes of practice 157
5.7.1 Introduction 157
5.7.2 CEB-FIP Model Code 1990 157
5.7.3 *fib* Model Code for Service Life Design 2006 158
5.7.4 EN 1992: Concrete structures (Eurocode 2) and associated product standards 166
5.7.5 *fib* Model Code 2010 171

5.8 Overview of modelling of deterioration processes 173
5.8.1 Introduction 173
5.8.2 Carbonation induced corrosion of reinforcement in uncracked concrete 176
5.8.3 Chloride induced corrosion of reinforcement in uncracked concrete 177
5.8.4 Other mechanisms – frost attack 182
5.8.5 Other mechanisms – sulfate attack 183
5.8.6 Other mechanisms – alkali-aggregate reaction (AAR) 184
5.8.7 Other mechanisms – leaching 184
5.8.8 Other mechanisms – surface weathering and abrasion by ice 184
5.8.9 Application of a deterministic model 184
5.8.10 Application of a probabilistic model 187
5.8.11 Application of the partial factor method 192
5.8.12 Reinforcement corrosion – Deterministic versus probabilistic service life design models 192

5.9 Factorial approach to estimating service life 193
5.9.1 Introduction 193
5.9.2 Factor method for predicting service life 193
5.9.3 Combining additional protective measures to extend service life 195

5.10 Service life design process and considerations 200
5.10.1 Introduction 200
5.10.2 Main steps in a service life design procedure 202
5.10.3 Approaches to detailed service life design 203
5.10.4 Target service life 205
5.10.5 Environmental aggressivity 206
5.10.6 Deemed-to-satisfy approach 206
5.10.7 Avoidance of deterioration 207
5.10.8 Factorial method for service life prediction 207
5.10.9 Types of modelling for service life design 207
5.10.10 Designing for resistance – Using models in service life design 208
5.10.11 Adoption of a multi-layer protection approach 208
5.10.12 Multi-layer protection of pre-stressing tendons 209
5.10.13 Observations for environments where de-icing salt is applied 214
5.10.14 Some observations upon structures in a marine environment 215
5.10.15 Execution and quality management issues 217
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10.16</td>
<td>‘Birth certificate’ documentation</td>
<td>217</td>
</tr>
<tr>
<td>5.10.17</td>
<td>Reliability updating</td>
<td>220</td>
</tr>
<tr>
<td>5.10.18</td>
<td>Maintenance, condition control and through-life care</td>
<td>223</td>
</tr>
<tr>
<td>5.10.19</td>
<td>Through-life monitoring and management of the structure</td>
<td>223</td>
</tr>
<tr>
<td>5.11</td>
<td>Measures to enhance resistance or avoid reinforcement corrosion</td>
<td>223</td>
</tr>
<tr>
<td>5.11.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>5.11.2</td>
<td>Selection of cementitious materials</td>
<td>224</td>
</tr>
<tr>
<td>5.11.3</td>
<td>Use of admixtures and fibres</td>
<td>237</td>
</tr>
<tr>
<td>5.11.4</td>
<td>Enhanced resistance of the surface of the concrete</td>
<td>242</td>
</tr>
<tr>
<td>5.11.5</td>
<td>Enhanced tolerance to carbonation and chlorides</td>
<td>251</td>
</tr>
<tr>
<td>5.11.6</td>
<td>Avoidance approach (Design-out approach)</td>
<td>264</td>
</tr>
<tr>
<td>5.11.7</td>
<td>Overview of measures to enhance resistance or avoid reinforcement corrosion</td>
<td>277</td>
</tr>
<tr>
<td>5.12</td>
<td>Some measures to enhance resistance or avoid other forms of deterioration</td>
<td>280</td>
</tr>
<tr>
<td>5.13</td>
<td>Influence of some design, execution and workmanship issues upon durability</td>
<td>282</td>
</tr>
<tr>
<td>5.13.1</td>
<td>Introduction</td>
<td>282</td>
</tr>
<tr>
<td>5.13.2</td>
<td>Influence of locally available concrete materials and labour</td>
<td>283</td>
</tr>
<tr>
<td>5.13.3</td>
<td>Dimensioning of structural elements</td>
<td>283</td>
</tr>
<tr>
<td>5.13.4</td>
<td>Reinforcement detailing and congestion</td>
<td>284</td>
</tr>
<tr>
<td>5.13.5</td>
<td>Compaction of concrete</td>
<td>285</td>
</tr>
<tr>
<td>5.13.6</td>
<td>Curing of concrete</td>
<td>285</td>
</tr>
<tr>
<td>5.13.7</td>
<td>Controlled permeability formwork (CPF)</td>
<td>287</td>
</tr>
<tr>
<td>5.13.8</td>
<td>Self-compacting concrete (SCC)</td>
<td>288</td>
</tr>
<tr>
<td>5.13.9</td>
<td>High performance concrete (HPC)</td>
<td>289</td>
</tr>
<tr>
<td>5.13.10</td>
<td>Spacers and chairs to support reinforcement</td>
<td>290</td>
</tr>
<tr>
<td>5.13.11</td>
<td>Inserts and fixtures</td>
<td>291</td>
</tr>
<tr>
<td>5.13.12</td>
<td>Stainless steel reinforcement</td>
<td>291</td>
</tr>
<tr>
<td>5.13.13</td>
<td>Quality assurance and quality control</td>
<td>295</td>
</tr>
<tr>
<td>5.13.14</td>
<td>Aesthetics and appearance</td>
<td>295</td>
</tr>
<tr>
<td>5.14</td>
<td>Construction quality issues – the role of the project execution specification</td>
<td>296</td>
</tr>
<tr>
<td>5.14.1</td>
<td>Introduction</td>
<td>296</td>
</tr>
<tr>
<td>5.14.2</td>
<td>The benefits of “Thinking construction and whole-life performance”</td>
<td>297</td>
</tr>
<tr>
<td>5.14.3</td>
<td>European construction standards and the CEN Execution Standard</td>
<td>297</td>
</tr>
<tr>
<td>5.14.4</td>
<td>Quality management standards – ISO 9000 series</td>
<td>299</td>
</tr>
<tr>
<td>5.14.5</td>
<td>Project quality plan – Illustration of contents</td>
<td>300</td>
</tr>
<tr>
<td>5.14.6</td>
<td>The project specification – Greater certainty of achieving durable concrete structures</td>
<td>300</td>
</tr>
<tr>
<td>5.14.7</td>
<td>Execution management and the requirement for supporting plans</td>
<td>301</td>
</tr>
<tr>
<td>5.14.8</td>
<td>Summary – the project execution specification as a means of enhancing durability</td>
<td>302</td>
</tr>
<tr>
<td>5.15</td>
<td>Improving durability – Benefits of pre-construction planning and trials</td>
<td>306</td>
</tr>
<tr>
<td>5.15.1</td>
<td>Introduction</td>
<td>306</td>
</tr>
<tr>
<td>5.15.2</td>
<td>Some potential problems in producing durable concrete structures</td>
<td>306</td>
</tr>
<tr>
<td>5.15.3</td>
<td>Step 1: Investigation of potential concrete supply problems</td>
<td>308</td>
</tr>
<tr>
<td>5.15.4</td>
<td>Step 2: Research into verification of durability</td>
<td>309</td>
</tr>
<tr>
<td>5.15.5</td>
<td>Step 3: Trial concrete mixes</td>
<td>310</td>
</tr>
<tr>
<td>5.15.6</td>
<td>Step 4: Investigation of potential placement problems</td>
<td>311</td>
</tr>
<tr>
<td>5.15.7</td>
<td>Step 5: Finalise construction requirements in project specification</td>
<td>312</td>
</tr>
<tr>
<td>5.15.8</td>
<td>Step 6: Provision of adequate resources for quality management</td>
<td>312</td>
</tr>
</tbody>
</table>
5.16 Condition control – Planned through-life structure management and care
5.16.1 Introduction
5.16.2 Classes of condition control
5.16.3 Through-life management of a structure – overview of activities
5.16.4 Condition control levels/inspection regimes
5.16.5 Strategy using proactive condition control measures
5.16.6 Strategy using reactive condition control measures
5.16.7 Situations where condition control measures are not feasible
5.16.8 Condition survey and monitoring activities
5.16.9 Condition assessment
5.16.10 Condition evaluation and decision-making
5.16.11 Interventions
5.16.12 Recording of life cycle information

5.17 Monitoring of durability and performance
5.17.1 Introduction
5.17.2 Locations for surveys, testing and monitoring activities
5.17.3 Condition survey and monitoring activities
5.17.4 Tools and techniques for surveys and monitoring
5.17.5 Gathering data for condition control purposes
5.17.6 General flow of condition survey process
5.17.7 Automated monitoring of concrete structures
5.17.8 Automated monitoring and updating of service life prediction

5.18 Examples from practice
5.18.1 Great Belt Fixed Link, Denmark
5.18.2 Western Scheldt Tunnel, the Netherlands

5.19 Future look – Some potential developments influencing service life design
5.19.1 Introduction
5.19.2 The proposed fib new Model Code (MC2010)
5.19.3 Improved scientific understanding of deterioration processes
5.19.4 Developments in cementitious materials
5.19.5 Further development and application of service life design principles

5.20 Acknowledgements

References and bibliography to Chapter 5
Abbreviations
Glossary