Editor’s remarks

Volumes 1, 2 and 3 of the second edition of Structural Concrete Textbook on behaviour, design and performance were recently published in fib Bulletin 51 (Design of concrete structures, Conceptual design, Concrete, reinforcement and composite behaviour), fib Bulletin 52 (Structural analysis, Design format, Serviceability and ultimate limit state principles, Anchorage and detailing principles) and fib Bulletin 53 (Design of durable concrete structures).

This fib Bulletin 54 is Volume 4 of the Textbook. A forthcoming Volume 5 on Through life care and management of concrete structures – Assessment, protection, repair and strengthening will be published as a separate bulletin.

Volume 4 of the Structural Concrete Textbook includes the following three areas:

Chapter 6 Design of concrete buildings for fire resistance was originally written by Karl Kordina. Regretfully, he passed away just after submitting his ideas about improvements for Chapter 6; nevertheless based on his guidance we were able to finalize this chapter. Serious cases of fire remind us again and again the importance of fire design. Chapter 6 includes guidance on progress of fire, modifications of material properties as a function of temperature (concrete, non-prestressed steel, prestressing steel), general design rules, design concept, robustness, spalling, thermal expansion, importance of joints, compartmentation, cooling and design examples for fire resistance.

Chapter 7 Design of members includes examples for linear members, slabs as well as deep beams and discontinuity regions.

The first example by Giuseppe Mancini in Chapter 7 gives all design details of a box-culvert under crossing a railway line for high speed trains. Particular attention is taken to the analysis and design of corner zones, detailing of reinforcement, anchorages, crack control and control of deformations. The second example also by Giuseppe Mancini gives the design of a two dimensional prestressed concrete slab (a railway bridge deck) that is a continuous slab on three supports with longitudinal and transverse prestressing. Details are included for the structural model, layout of prestressing reinforcement, analysis of initial or time dependent losses of prestressing, verification of serviceability and ultimate limit states and verification of bursting forces in the anchorage zones by using the symmetric prism analogy. A separate section was prepared by Giuseppe Mancini on reinforcement layouts of some typical elements. Deep Beams and discontinuity regions are presented by Kurt Schäfer including definition of D (discontinuity) regions, design of deep beams and discontinuity regions by strut-and-tie models with design examples.

Volume 4 is concluded by Chapter 8 Practical aspects by Konrad Zilch and Angelika Schießl. Details are included on definition of tolerances, effects of tolerances on durability, on serviceability, on appearance, on erection of precast structures. Quality requirements are given in the form of control methods of variation of material properties. Quality management, quality assurance plans, quality control, control levels, and influences on erection by the formwork and prestressing are also addressed.

Finally, I would like to express my thanks to the authors of the Textbook for their very valuable work in preparing their contributions. In addition, my special thanks are directed to Laura Thommen-Vidale in the fib secretariat in Lausanne for her careful work in finalizing the manuscripts, as well as to Dr. Éva Lublóy at my university in Budapest for her assistance to me.

György L. Balázs
Editor, Deputy-President, fib
Contents

6 Design of concrete buildings for fire resistance 1

6.1 Fire risks 1
 6.1.1 Objectives and design provisions 1
 6.1.2 Costs and losses 2

6.2 Structural fire design 3
 6.2.1 Fire severity 3
 6.2.2 Progress of fire in a building 4
 6.2.3 Structural response 6
 (Spalling – Separating functions – Fire resistance design – Tabulated data)

6.3 Material properties 9
 6.3.1 General aspects on the material properties 9
 6.3.2 Concrete 10
 6.3.3 Steel 12

6.4 General design rules and tables 14
 6.4.1 General 14
 6.4.2 Tabulated data 14
 (Scope – General design rules)

6.5 Overall design 15
 6.5.1 Concept design and detailing 15
 6.5.2 Robust structures 16
 6.5.2 Thermal expansion, restraint and behaviour of buildings in fire 17
 6.5.4 Compartmentation 21
 6.5.5 Fires in tunnels 22

6.6 Damage caused by fire exposure 24
 6.6.1 Circumstances and indication at the place of the fire 24
 6.6.2 Material damage 24
 6.6.3 Structural damage 27
 6.6.4 Determination of the degree of deterioration, method of repair 28

Annex to Chapter 6 30
 A.1 General considerations 30
 A.2 Columns 30
 A.3 Load bearing solid walls 31
A.4 Beams
(General – Simply supported beams – Continuous beams)
A.5 Simply supported slabs
A.6 Flat slabs

7 Design of members

7.1 Linear members
7.1.1 Description of the structures
7.1.2 Structural model
7.1.3 Actions
7.1.4 Combination for ULS and consequent internal actions
(Design of upper slab and foundation – Design of uprights)
7.1.5 Reinforcement layout
7.1.6 Verification at serviceability limit state
(Stress limitation – Crack width – Deformation)

7.2 Slabs
7.2.1 Description of the structure
(Material properties – Concrete cover)
7.2.2 Structural model
(Restrains – Prestressing forces – Time-dependent prestressing losses)
7.2.3 Actions
7.2.4 Combinations of actions
7.2.5 Verification at serviceability limit state
(Verification at tensioning – Verification of limit state of stress limitation in concrete – Verification of serviceability limit state of cracking – Deformation)
7.2.6 Verification of ultimate limit state
(Ultimate limit state of slab – Verification of bursting force – Verification of spalling force – Verification of punching action)

7.3 Deep beams and discontinuity regions
7.3.1 Principles and methods of design
(Introduction to the design of deep beams and discontinuity regions – The design of D-regions with finite element computer programs (FEM) – Design of deep beams and discontinuity regions with strut-and-tie models)
7.3.2 Deep beams
(General – Numerical example of a deep beam)
7.3.3 Beam-column connections
(General behaviour – Beam-column connections with negative (closing) moment – Beam-column connections with positive (opening) moment – Rigid connection of column with continuous beam – Members with a kink and joints of profiled members)
7.3.4 Corbels
(Load bearing behaviour and necessary checks – Standard design for a corbel (numerical example) – Corbels with suspended or indirect load)

7.4 Reinforcement layout of typical elements

8 Practical aspects

8.1 Introduction

8.2 Geometric tolerances
8.2.1 Definition and types
8.2.2 Effects on tolerances
(Effects on safety – Effects on durability – Effects on serviceability and structural appearance – Effects on erection of precast concrete structures – Admissible tolerances)

8.3 Quality requirements for material properties
8.3.1 Variations in material properties
8.3.2 Control methods of variations in material properties
8.3.3 Influences of variation in material properties
(Effects on safety – Effects on economy – Effects on serviceability and structural appearance)

8.4 Quality management
8.4.1 General
8.4.2 Concept of quality management
8.4.3 Quality assurance plant
8.4.4 Quality control
(General – Phases of control – Types of control – Control levels)

8.5 Aspects in erection of RC and PC structures
8.5.1 General
8.5.2 Formwork and falsework
(Formwork – Falsework)
8.5.3 Curing

8.6 Prestressing
8.6.1 Time of prestressing
8.6.2 Effects of prestressing during construction

8.7 Precast elements and structures
8.7.1 General
8.7.2 Joints

References to Chapter 8

Annex: List of notations