Contents

Preface iii

0 Introduction x

Part I - General provisions

1 Scope 1
 1.1 General 1
 1.2 Permissible anchor type and anchorage configurations 1
 1.3 Prequalification and quality control requirements for products 9
 1.4 Permissible anchor dimensions and materials 10
 1.5 Permissible anchor loading 11
 1.6 Permissible concrete strength 15
 1.7 Permissible loading of the concrete members 15
 1.8 Reliability classes 16

2 Terminology 21
 2.1 Definitions 21
 2.2 Indices (subscripts/superscripts) 26
 2.3 Actions and resistances 28
 2.4 Concrete and steel 31
 2.5 Notation – dimensional 32
 2.6 Greek symbols 35
 2.7 Units 35

3 Basis of design 36
 3.1 General 36
 3.2 Required verifications 37
 3.3 Design format 42
 3.4 Partial factors 44
 3.4.1 Partial factors for actions 44
 3.4.2 Partial factors for resistance 45
 3.5 Project specifications and anchor installation 48
 3.5.1 Project specification 48
 3.5.2 Installation 49

4 Determination of action effects 52
 4.1 General 52
 4.2 Effect of friction 52
 4.3 Ultimate limit state 55
 4.3.1 Elastic analysis 55
 4.3.2 Plastic analysis 96
 4.4 Serviceability limit state and fatigue 102
 4.5 Seismic loading 102

5 Determination of concrete condition 102

6 Verification of limit states 103
 6.1 Ultimate limit state 103
 6.2 Serviceability limit state 104
 6.3 Fatigue 105
 6.4 Verification for load combinations including seismic actions 111
 6.5 Fire 116
 6.5.1 General 116
 6.5.2 Partial factors 116
 6.5.3 Resistance under fire exposure 117
7 Durability 122
8 Provisions for ensuring the characteristic resistance of the concrete member 124
 8.1 General 124
 8.2 Shear resistance of concrete member 124
 8.3 Resistance to splitting forces 128

Part II - Characteristic resistance of anchorages with post-installed expansion anchors, undercut anchors, screw anchors and torque-controlled bonded expansion anchors

9 Scope 130
10 Ultimate limit state – elastic design approach 136
 10.1 Resistance to tension load 136
 10.1.1 Required verifications 136
 10.1.2 Steel failure 137
 10.1.3 Pullout failure 137
 10.1.4 Concrete cone failure 137
 10.1.5 Splitting failure 143
 10.2 Resistance to shear load 145
 10.2.1 Required verifications 145
 10.2.2 Steel failure 146
 10.2.3 Pullout failure 148
 10.2.4 Concrete pryout failure 148
 10.2.5 Concrete edge failure 149
 10.3 Resistance to combined tension and shear load 163
 10.3.1 Anchorages far from edges, anchorages close to edges with shear resisted by front anchors 163
 10.3.2 Anchorages close to edges with shear resisted by the back anchors 165
 10.3.3 Anchorages loaded by a tension load and a shear load with lever arm 167

11 Ultimate limit state – plastic design approach 168
 11.1 Field of application 168
 11.2 Resistance to tension load 168
 11.2.1 Steel failure 169
 11.2.2 Pullout failure 169
 11.2.3 Concrete cone failure 169
 11.2.4 Splitting failure 169
 11.3 Resistance to shear load 169
 11.3.1 Required verifications 170
 11.3.2 Steel failure 170
 11.3.3 Concrete pryout failure 170
 11.3.4 Concrete edge failure 171
 11.4 Resistance to combined tension and shear load 171

12 Serviceability limit state 171
13 Fatigue loading 172
14 Seismic loading 172
Part III - Characteristic resistance of anchorages with bonded anchors and connections with post-installed reinforcing bars

15 General 173
16 Anchorages with bonded anchors 176
16.1 Scope 176
16.2 Ultimate limit state – elastic design approach 181
16.2.1 Resistance to tension load 181
16.2.2 Resistance to shear load 187
16.2.3 Resistance to combined tension and shear load 188
16.3 Ultimate limit state – plastic design approach 188
16.4 Serviceability limit state 189
16.5 Fatigue 189
16.6 Seismic loading 189

17 Connections with post-installed reinforcing bars 189
17.1 Scope 189
17.2 Prequalification testing 190
17.3 Design 192
17.3.1 General 192
17.3.2 Dimensioning of the connection 193
17.4 Design for fire 194
17.5 Installation and job site quality control 195

Part IV - Characteristic resistance of anchorages with cast-in headed anchors

18 Scope 196
19 Ultimate limit state - elastic design approach 202
19.1 Anchorages without anchor reinforcement 202
19.1.1 Resistance to tension load 203
19.1.2 Resistance to shear load 208
19.2 Anchorages with anchor reinforcement 209
19.2.1 Resistance to tension load 209
19.2.2 Resistance to shear loads 214
19.2.3 Resistance to combined tension and shear loads 220

20 Ultimate limit state - plastic design approach 221
21 Serviceability limit state 222
22 Fatigue loading 224
23 Seismic loading 224

Part V - Characteristic resistance of anchorages with cast-in anchor channels

24 Scope 225
25 Determination of action effects 230
25.1 Derivation of forces acting on anchors of anchor channels 230
25.1.1 General 230
25.1.2 Tension loads 230
25.1.3 Shear loads 232

26 Ultimate limit state - elastic design approach 232
26.1 Anchor channels without anchor reinforcement 232
26.1.1 Resistance to tension loads 232
26.1.2 Resistance to shear loads 241
26.1.3 Resistance to combined tension and shear load 248
26.2 Anchor channels with anchor reinforcement 250
26.2.1 Resistance to tension load 250
26.2.2 Resistance to shear failure 252
26.2.3 Resistance to combined tension and shear loads 254

27 Serviceability limit state 255

28 Fatigue loading 255

29 Seismic loading 255

References 257