Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xii</td>
</tr>
<tr>
<td>1 Suitability of precast concrete construction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Advantages and limitations</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Differences in precast and cast in-situ structures</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Opportunities in prefabrication</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1 Factory-made products</td>
<td>6</td>
</tr>
<tr>
<td>1.4.2 Prestressing</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3 Optimum use of materials</td>
<td>7</td>
</tr>
<tr>
<td>1.4.4 Quality</td>
<td>7</td>
</tr>
<tr>
<td>1.4.5 Architectural freedom</td>
<td>7</td>
</tr>
<tr>
<td>1.4.6 Structural efficiency</td>
<td>7</td>
</tr>
<tr>
<td>1.4.7 Flexibility in use</td>
<td>8</td>
</tr>
<tr>
<td>1.4.8 Adaptability</td>
<td>8</td>
</tr>
<tr>
<td>1.4.9 Fire-resistant construction</td>
<td>8</td>
</tr>
<tr>
<td>1.4.10 Environmentally friendly construction</td>
<td>9</td>
</tr>
<tr>
<td>1.4.11 Appearance and surface finishing</td>
<td>9</td>
</tr>
<tr>
<td>1.4.12 Transport and site erection</td>
<td>9</td>
</tr>
<tr>
<td>1.4.13 Building services</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Quality assurance and product certification</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Best practices in precast concrete</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1 Residential buildings</td>
<td>11</td>
</tr>
<tr>
<td>1.6.2 Office buildings</td>
<td>12</td>
</tr>
<tr>
<td>1.6.3 High-rise buildings</td>
<td>15</td>
</tr>
<tr>
<td>1.6.4 Hotels</td>
<td>15</td>
</tr>
<tr>
<td>1.6.5 Public services buildings</td>
<td>16</td>
</tr>
<tr>
<td>1.6.6 Educational and cultural buildings</td>
<td>17</td>
</tr>
<tr>
<td>1.6.7 Retail buildings</td>
<td>19</td>
</tr>
<tr>
<td>1.6.8 Sports arenas and stadia</td>
<td>20</td>
</tr>
<tr>
<td>1.6.9 Car parks</td>
<td>21</td>
</tr>
<tr>
<td>1.6.10 Industrial buildings and warehouses</td>
<td>21</td>
</tr>
<tr>
<td>1.6.11 Other structures</td>
<td>22</td>
</tr>
<tr>
<td>2 Preliminary design considerations</td>
<td>24</td>
</tr>
<tr>
<td>2.1 Approaches to design</td>
<td>24</td>
</tr>
<tr>
<td>2.2 Basic design recommendations</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1 Respecting a design philosophy to precasting</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2 Using standard solutions whenever possible</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Details should be simple</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4 Taking dimensional tolerances into account</td>
<td>27</td>
</tr>
<tr>
<td>2.2.5 Taking advantage of the industrialization process</td>
<td>27</td>
</tr>
<tr>
<td>2.2.6 Modulation is recommendable</td>
<td>27</td>
</tr>
<tr>
<td>2.2.7 Standardization of products and processes</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Basic conceptual design principles in earthquake regions</td>
<td>29</td>
</tr>
<tr>
<td>2.3.1 Structural simplicity</td>
<td>29</td>
</tr>
</tbody>
</table>
2.3.2 Regularity and uniformity in plan 29
2.3.3 Regularity and uniformity in height 33
2.3.4 Bi-directional resistance, torsional resistance and stiffness 34
2.3.5 Adequate and secure connections in precast buildings 35
2.3.6 Adequate foundation 35
2.3.7 Effects of the contribution of infills, partitions and claddings 36

2.4 Schematic design in initial stage 37
2.5 Selection of a structural precast system 39
2.5.1 General 39
2.5.2 Portal and skeletal systems 40
2.5.3 Bearing-wall systems 40
2.5.4 Façade systems 41
2.5.5 Floors and roofs 42
2.5.6 Cell systems 42

2.6 Mixed precast construction 43
2.7 Review of precast concrete structural systems 44

3 Precast building systems 45
3.1 Introduction 45
3.2 Structural systems 45
3.2.1 Portal-frame systems 46
3.2.2 Skeletal frame systems 47
3.2.3 Wall-frame systems 50
3.2.4 Floor systems 51
3.2.5 Precast roof solutions 55
3.2.6 Concrete façades 56

3.3 Applications of precast structural systems 59
3.3.1 Residential buildings 59
3.3.2 Offices and administrative buildings 61
3.3.3 Hotels and hospitals 62
3.3.4 Educational buildings 62
3.3.5 Industrial buildings and warehouses 63
3.3.6 Commercial buildings 64
3.3.7 Car parks 64
3.3.8 Sports facilities 67

4 Structural stability 69
4.2 Unbraced precast structures 70
4.2.1 Cantilever action of columns 70
4.2.2 Frame action 72

4.3 Braced precast structures 73
4.3.1 Principle 73
4.3.2 Central cores and lift shafts 74
4.3.3 Shear-wall action 75
4.3.4 Infill walls 77

4.4 Floor diaphragm action 77
4.4.1 General 77
4.4.2 Basic requirements 78
4.4.3 Modelling and detailing 81
4.4.4 Interaction of frame systems with precast floor systems in seismic regions 83
4.5 Expansion joints 84
4.6 Structural integrity 86
4.6.1 Tie systems 86
4.6.2 Types of ties and resistance 87
4.7 Design with regard to accidental actions 90
4.7.1 Design strategies 90
4.7.2 Design methods 90
4.7.3 Tie-force method 91
4.7.4 Alternative-load-path method 92
4.7.5 Specific load resistance method 94
4.7.6 Comparison with seismic design 95

5 Structural connections 97
5.1 General 97
5.2 Basic design criteria 98
5.2.1 Structural behaviour 98
5.2.2 Dimensional tolerances 101
5.2.3 Fire resistance 102
5.3 Basic force transfer mechanisms 103
5.3.1 Encasing 103
5.3.2 Anchorage of reinforcing bars 103
5.3.3 Dowel action 105
5.3.4 Bond 106
5.3.5 Friction 107
5.3.6 Shear interlock 107
5.3.7 Staggered joints 108
5.3.8 Bolting 109
5.3.9 Welding 109
5.3.10 Post-tensioning 110
5.4 Types of structural connections 110
5.4.1 Connections transferring compressive forces 110
5.4.2 Connections transferring tensile forces 119
5.4.3 Connections transferring shear forces 122
5.4.4 Connections transferring bending moments 127
5.4.5 Connections transferring torsion 137
5.5 Other design criteria 140
5.5.1 Manufacture 140
5.5.2 Storage and transport 141
5.5.3 Erection 141

6 Portal-frame and skeletal structures 142
6.1 Introduction 142
6.2 Types of precast framed structures 144
6.2.1 Portal frames 144
6.2.2 Portal frames with intermediate floors 147
6.2.3 Skeletal structures 148
6.3 Layout and modulation 154
6.4 Structural stability 156
6.5 Elements 158
6.5.1 General 158
6.5.2 Columns 158
8.8.2 Support connections 220
8.8.3 Connections at lateral joints 222
8.8.4 Hollow-core units clamped between walls 222
8.8.5 Support connections on steel beams 224

9 Architectural concrete façades 226
9.1 General 226
9.2 Precast façade systems 226
9.2.1 Load-bearing façades 226
9.2.2 Non-load-bearing façades 227
9.2.3 Sandwich panels 228
9.2.4 Twin-skin façades 230
9.2.5 Special elements 231

9.3 Structural stability 232
9.3.1 Stability provided by cores and shear-wall action 232
9.3.2 Stability provided by the façade 232

9.4 Principles of design and dimensioning of the units 232
9.4.1 General 232
9.4.2 Actions during the various construction phases 233

9.5 Other design aspects 233
9.5.1 Thermal deformations 233
9.5.2 Creep and shrinkage 234
9.5.3 Settlement of the supporting structure 234

9.6 Shape and dimensions of the units 234
9.6.1 Mould considerations 234
9.6.2 Preferential dimensions of the elements 236
9.6.3 Modulation 238

9.7 Surface finishing 239
9.7.1 Texture 239
9.7.2 Colour 239
9.7.3 Faced panels 239

9.8 Thermal insulation 240

9.9 Panel fixings 244
9.9.1 Types of fixings and applications 244
9.9.2 Designing to cope with differential movement 246
9.9.3 Tolerances 246
9.9.4 Durability 247

9.10 Drip grooves 247

9.11 Weathering joints 248
9.11.1 Appearance of weathering joints in façades 248
9.11.2 Design of joints 249

10 Constructional detailing and dimensional tolerances 253
10.1 General 253
10.2 Support connections 253
10.2.1 General requirements 253
10.2.2 Support length 253
10.2.3 Half joints 255
10.2.4 Beam boot support 257
10.3 Concrete corbels 258
10.3.1 General 258
10.3.2 Corbel design 259
10.3.3 Detailing of corbel reinforcement 261
10.3.4 Hidden corbels 262
10.3.5 Beam corbels 263
10.4 Design of openings and cutouts 265
10.4.1 Holes and cutouts in beams 265
10.4.2 Openings and cutouts in floors 265
10.5 Special reinforcement 267
10.5.1 Anchorage zones of prestressed components 267
10.5.2 Transverse reinforcement of column ends 268
10.5.3 Walls and façade elements 269
10.6 Dimensional tolerances 270
10.6.1 General 270
10.6.2 Types of tolerances 270

11 Fire resistance 271
11.1 General 271
11.2 Basic requirements 271
11.3 Fire actions 273
11.3.1 Decrease in material performance 273
11.3.2 Thermal expansion 275
11.3.3 Transverse deformation of cross section 276
11.4 Global structural analysis 277
11.5 Member analysis 278
11.5.1 Member analysis 278
11.5.2 Example of simplified calculation method 280
11.5.3 Analysis by testing 282
11.6 Fire resistance of components 282
11.6.1 Columns 283
11.6.2 Beams 286
11.6.3 Walls 289
11.6.4 Prestressed hollow-core walls 290
11.6.5 Ribbed floors 294
11.7 Fire resistance of structural connections 294
11.7.1 Pinned connections 294
11.7.2 Floor-beam connections 295
11.7.3 Steel inserts and connections 295
11.7.4 Joints 295

References 296