# Contents

1 Introduction 1
   1.1 General 2
   1.2 Scope 3
   1.3 Key features 4

2 Terms and definitions 5

3 Basic principles of earthquake-resistant design 7
   3.1 General 7
      3.1.1 Performance-based design philosophy 7
      3.1.2 Performance requirement 9
         3.1.2.1 Damage-limitation limit state 10
         3.1.2.2 Collapse-prevention limit state 11
      3.1.3 Seismic actions 12
         3.1.3.1 Acceleration spectrum 12
         3.1.3.2 Elastic-displacement spectrum 13
      3.1.4 Equivalent damping for hysteretic response 14
      3.1.5 Design concept 15
         3.1.5.1 Force-based design 15
         3.1.5.2 Displacement-based design 16
   3.2 The case of precasting 19
      3.2.1 Performance-based design philosophy 19
      3.2.2 Connections 20
      3.2.3 Ductility properties of structures 21
      3.2.4 Supports 22
      3.2.5 Second-order effects 23
      3.2.6 Cladding-panel connections 23
      3.2.7 Shear failure 24
      3.2.8 Design of diaphragms 24
      3.2.9 Stability of beams supported on columns 25
      3.2.10 Structural integrity of precast structures - Ties 26
   3.3 Basic principles of conceptual design (to satisfy the fundamental requirements of collapse avoidance and damage limitation) 28
      3.3.1 General 28
      3.3.2 Basic principles of conceptual design 29
         3.3.2.1 Structural simplicity 30
         3.3.2.2 In-plan uniformity - regularity 31
         3.3.2.3 Vertical uniformity - regularity 32
         3.3.2.4 Bidirectional resistance, torsional resistance and stiffness 33
3.3.2.5 Effects of the contribution of infills, partitions and cladding (strong beam-weak column) .................................................. 40
3.3.2.6 Adequacy of foundation ..................................................................................................................... 43

4 Precast-building systems .................................................................................................................. 45
4.1 General ...................................................................................................................................................... 45

5 Frame systems ................................................................................................................................................. 46
5.1 General ...................................................................................................................................................... 46
5.2 Frames with hinged beam-to-column connections and HCF (cantilevered-column system in ASCE 7-10) .................................................................................................................. 46
5.2.1 Hinged beam-to-column connections for HCF .................................................................................. 48
5.3 Frames with moment-resisting columns ............................................................................................... 58
5.3.1 General ...................................................................................................................................................... 58
5.3.2 Equivalent monolithic moment-resisting beam-to-column connection systems .......................... 65
5.3.2.1 System S1 ............................................................................................................................................. 65
5.3.2.2 System S2 ............................................................................................................................................. 73
5.3.2.3 System S3 ............................................................................................................................................. 78
5.3.2.4 System S4 ............................................................................................................................................. 83
5.3.2.5 System S5 ............................................................................................................................................. 87
5.3.2.6 System S6 ............................................................................................................................................. 91
5.3.2.7 System S7 ............................................................................................................................................. 95
5.3.3 General information on jointed systems (H1, H2 and H3) .................................................................. 99
5.3.4 Column-to-foundation connections .................................................................................................. 117
5.3.4.1 Socket foundation .............................................................................................................................. 118
5.3.4.2 Column-to-foundation connections with corrugated-metal ducts or steel sleeves .................. 126
5.3.4.3 Column-to-foundation connections with anchor bolts ................................................................. 128
5.3.4.4 Column-to-foundation connections with steel base plates ......................................................... 129
5.3.4.5 Column-to-foundation connections with external mild-steel reinforcement ................................ 130
5.3.5 Beam-to-column connections .......................................................................................................... 133
5.3.6 Column-to-column connections ....................................................................................................... 136

6 Large-panel wall systems ..................................................................................................................... 139
6.1 General ...................................................................................................................................................... 139
6.2 Classification ............................................................................................................................................ 139
6.3 Seismic behaviour and structural integrity or robustness ...................................................................... 141
6.4 Possible mechanisms for dissipation of seismic energy ...................................................................... 143
6.5 Load effects in large-panel connections
6.6 Configuration and structural behaviour of wet joints made with cast-in-situ concrete and loop reinforcements
6.7 Construction details for large-panel buildings with wet joints (concrete and reinforcement)
6.8 Configuration and structural behaviour of North American platform-framing connections
   6.8.1 Horizontal connections
   6.8.2 Vertical-shear wall-to-wall connections
   6.8.3 Structural integrity
   6.8.4 Further information about ties, based on Schultz, 1979
7 Wall-frame systems (dual systems)
   7.1 General
   7.2 Shear walls and moment frames in dual systems
   7.3 Typical connections in structural wall systems
8 Floor-framing systems
   8.1 General
   8.2 Aspects of diaphragm behaviour in precast-floor systems
      8.2.1 Diaphragms with topping
      8.2.2 Floors without topping
      8.2.3 Rigid versus flexible diaphragms
      8.2.4 Internal diaphragm actions
      8.2.5 Behaviour of precast-floor diaphragms under seismic action
   8.3 Displacement incompatibility issues between lateral-resisting systems and precast-floor diaphragms
      8.3.1 General
      8.3.2 Strength enhancement of beams due to interaction with precast floors
      8.3.3 Other examples of displacement incompatibility effects
      8.3.4 Design guidelines for hollow-core-floor-to-lateral-resisting-system connections
      8.3.5 Support length of precast-floor units for prevention of unseating in seismic situations
   8.4 Controlling and reducing damage to floor diaphragm
      8.4.1 Jointed, 'articulated' floor system
      8.4.2 Top-hinge and slotted solution
9 Double-wall systems
   9.1 General
SLS (damage limitation) 250

C.4 Closed-form force-based design (CFBD) of one-storey industrial building for ULS (collapse prevention) 252
C.4.1 Step 1: Determining yield deflection of structure 252
C.4.2 Step 2: Determining feasible design solutions using strength-stiffness compatibility-domain curve 253
C.4.3 Step 3: Determining design seismic base shear and verifying sensitivity coefficient 254

C.5 Closed-form force-based design (CFBD) of one-storey industrial building for SLS (damage limitation) 256

C.6 Displacement-based design (DBD) of one-storey industrial building for ULS (collapse prevention) 258
C.6.1 Step 1: Equivalent SDOF system 258
C.6.2 Step 2: Setting ultimate (target) displacement and calculating yielding displacement, ductility and equivalent viscous damping 259
C.6.3 Step 3: Entering displacement spectrum and evaluating effective period and stiffness (secant to target displacement) 260

C.7 Displacement-based design (DBD) of one-storey industrial building for SLS (damage limitation) 262
C.7.1 Step 1: Equivalent SDOF building 262
C.7.2 Step 2: Setting ultimate (target) displacement and calculating yielding displacement, ductility and equivalent viscous damping 262
C.7.3 Step 3: Entering displacement spectrum and evaluating effective period and stiffness (secant to target displacement) 263

C.8 Comparison of FBD, closed-form FBD and DBD 264

References 265