Contents

1	Introduction	1
1.1	Scope of the document	1
1.2	Mechanically excavated tunnels	1
1.3	Fibre reinforced concrete in segmental lining tunnels	3
1.4	References	7
2	Material	8
3	Design for transient load situations during production	12
3.1	Transient load situations	12
3.2	Safety format and design strategies	13
3.3	Criteria for replacing steel bars with fibres	14
3.4	Design procedure according to Limit States Approach	14
3.4.1	Introduction	14
3.4.2	Reinforcement design by means of sectional analysis	15
3.4	4.2.1 Assessment of M_{crd}	15
3.4	4.2.2 Assessment of the required f_{R3k} for a specific M_d	16
3.4.3	8 R/FRC segments with $M_u \ge M_{cr,d}$	17
3.4.4	FRC segments with $M_u \ge M_{cr,d}$	18
3.4.5	FRC segments with $M_u < M_{cr,d}$	18
3.5	Cracking service limit state	19
3.6	Design for different loading stages	20
3.6.1	Demoulding	20
3.6.2	2 Stacking	21
3.6.	3 Transportation	22
3.6.4	4 Handling	23
3.7	References	24
4	TBM Thrust phase	26
4.1	Local segment behaviour	27
4.1.1	Local segment behaviour of FRC tunnel segments	32
4.2	Global segment behaviour	35
4.2.1	Global segment behaviour of FRC tunnel segments	39
4.3	References	41

5	Final state loading condition	44
6	Evaluation of tunnel linings under fire exposure	46
6.1	Introduction	46
6.2	Degradation of the material properties	46
7	Connectors	50
7.1	Introduction	50
7.2	Types of connectors	50
7.3	Use of connectors	50
7.4	Loads and failure modes for inserts in concrete	52
7.5	Design of connectors	52
7.5.	Design against steel rupture	53
7.5.	2 Design for loss of interface bearing in sockets	54
7.5.	3 Design for concrete failure on the basis of the Concrete Capacity Design	54
75	1 Extreme and long term leading conditions	54
7.9.4	Extreme and long – term loading conditions	56
7.5.	Design combinations and safety concept	50
7.6	References	57 58
8	Durahility	60
0 1		60
0.1 0.2	Introduction	60
8.2	Existing standards and guidelines	60
8.3	Corrosion of steel fibres	62
0. <i>3</i> .	Corrosion in uncracked concrete	62
0. <i>3</i> .	2 Corrosion in cracked concrete	72
0.4 0.5	Stray-current induced fibre corrosion	75
8.5 8.6	References	74 75
9	Quality control	78
)		70
9.1	Initial tests, trials	/0
9.1.1	Assessment of concrete properties at 28 days	/8
9.1.2	Assessment of concrete properties at early age	81 01
9.1.3	Assessment of concrete properties in the long term	81
9.1.4	Further tests	82
9.2	lests during production	83
9.3	Acceptance criteria	84
9.4	References	84

10 The sustainability assessment of tunnel linings through the		
combined use of EMI and MIVES methods	85	
10.1 Sustainability Index	86	
10.1.1 Method for defining the value function	88	
10.2 Mechanical Index	92	
10.3 Application to a concrete lining	95	
10.4 Conclusions	100	
10.5 References	101	
11 Case studies	103	
11.1 Case Study I	103	
10.2 Case Study 2	120	
Appendix I: Definition of M-N envelopes at ULS		
Appendix 2: Definition of M-N envelopes at SLS		
Appendix 3: Stress-strain relationship for Non Linear analysis		
References		