5 Final state loading condition 44
6 Evaluation of tunnel linings under fire exposure 46
 6.1 Introduction 46
 6.2 Degradation of the material properties 46
7 Connectors 50
 7.1 Introduction 50
 7.2 Types of connectors 50
 7.3 Use of connectors 50
 7.4 Loads and failure modes for inserts in concrete 52
 7.5 Design of connectors 52
 7.5.1 Design against steel rupture 53
 7.5.2 Design for loss of interface bearing in sockets 54
 7.5.3 Design for concrete failure on the basis of the Concrete Capacity Design Method (CCD) 54
 7.5.4 Extreme and long – term loading conditions 56
 7.5.5 Design combinations and safety concept 56
 7.5.6 Load bearing capacity verification 57
 7.6 References 58
8 Durability 60
 8.1 Introduction 60
 8.2 Existing standards and guidelines 60
 8.3 Corrosion of steel fibres 62
 8.3.1 Corrosion in uncracked concrete 62
 8.3.2 Corrosion in cracked concrete 65
 8.4 Stray-current induced fibre corrosion 73
 8.5 Summary 74
 8.6 References 75
9 Quality control 78
 9.1 Initial tests, trials 78
 9.1.1 Assessment of concrete properties at 28 days 78
 9.1.2 Assessment of concrete properties at early age 81
 9.1.3 Assessment of concrete properties in the long term 81
 9.1.4 Further tests 82
 9.2 Tests during production 83
 9.3 Acceptance criteria 84
 9.4 References 84
The sustainability assessment of tunnel linings through the combined use of EMI and MIVES methods

10.1 Sustainability Index

10.1.1 Method for defining the value function

10.2 Mechanical Index

10.3 Application to a concrete lining

10.4 Conclusions

10.5 References

11 Case studies

11.1 Case Study 1

11.2 Case Study 2

Appendix 1: Definition of M-N envelopes at ULS

Appendix 2: Definition of M-N envelopes at SLS

Appendix 3: Stress-strain relationship for Non Linear analysis

References