Contents

Foreword		i
1. Ge	neral	1
1.1 Intr	oduction	1
1.2 Exte	ernally applied reinforcement (EAR)	1
	plications of EAR	2
	R basic application forms	4
	n and content of this report	4
	terials, systems and techniques	6
2.1 Ma 2.1.1	terials for EAR strengthening General	6
	Fibres	7
	Matrices	9
	FRP materials	9
	Adhesives for bonding EAR	12
	ernally applied reinforcement systems	13
2.2.1		14
2.2.2	Pre-cured (prefabricated) elements	14
2.3 Tec	hniques for EAR strengthening	15
	Basic FRP technique	15
2.3.2	Subsequent or special techniques	15
3. Bas	sis of design and structural analysis	25
3.1 Ger	neral	25
3.2 Rec	uirements	25
	Basic requirements	25
3.2.2	Reliability management	26
3.2.3	Design working life, durability and quality management	26
3.3 Lim	it states design	26
3.4 Bas	ic variables: actions and environmental influences	27
3.4.1	Actions	27
3.4.2	Environmental influences	27
3.5 Bas	ic variables: material and product properties	27
3.5.1	Geometrical properties	27
3.5.2	Mechanical properties	28
3.5.3	Technological properties	29

3.6 Verification by partial factor method	30
3.6.1 General	30
3.6.2 Stress-strain relationship for FRP and design values	30
3.6.3 ULS verification of bond failure	31
3.7 Strategies for design	32
3.7.1 Behavioural aspects	32
3.7.2 Limit states governing the design	33
3.7.3 Desirable failure modes at ultimate limit state (static actions)	33
3.7.4 Deformation capacity at the ultimate limit state	34
3.7.5 Accidental loss of FRP – degree of strengthening	35
3.7.6 Impact of local strengthening on global behaviour and structural integri	ty 36
3.7.7 Design flow charts	37
3.8 Structural analysis and design by testing	37
3.8.1 Structural modelling	37
3.8.2 Static actions and fatigue	37
3.8.3 Dynamic actions	37
3.8.4 Fire design and protection	37
3.8.5 Design by testing	39
3.9 Additional considerations for seismic upgrading	39
4. Durability considerations	40
4.1 General	40
4.2 Creep, stress rupture and stress corrosion	40
4.3 Temperature effects	41
4.3.1 Glass transition temperature	41
4.3.2 Service temperature	42
4.3.3 Freeze-thaw	42
4.3.4 Bond behaviour at high and low temperatures	43
4.4 Moisture	44
4.4.1 Effect of water absorption on FRP	44
4.4.2 Moisture durability of an FRP-concrete system	45
4.5 UV light exposure	46
4.5.1 General	46
4.5.2 Protection	47
4.6 Alkalinity and acidity	47
4.7 Lightning and galvanic corrosion	47

5. Bo	nd	49
5.1 Boi	nd behaviour	49
5.1.1		49
5.1.2		49
5.1.3		50
5.2 De	bonding mechanisms for EBR systems	51
5.2.1	Debonding mechanisms in RC beams with flexural strengthening	52
5.2.2		54
5.3 Saf	ety verifications with respect to debonding of EBR systems	55
5.3.1	Effective bond length	55
5.3.2	Ultimate strength for debonding at the end anchorage zone	57
5.3.3	Ultimate strength for debonding at intermediate cracks	58
5.3.4	Effect of fatigue	60
5.4	Debonding mechanisms for NSM FRP systems	60
5.4.1	Debonding mechanisms	60
5.4.2	Debonding mechanisms in beams strengthened in flexure	63
5.4.3	Debonding mechanisms in beams strengthened in shear	65
5.5 Saf	ety verifications with respect to debonding of NSM systems	66
5.5.1	Bond length	66
5.5.2	Ultimate strength for debonding	66
5.5.3	Effect of fatigue	67
5.6	Mechanical anchorages	68
Append	dix 5.1 – Details on bond-slip relationships and strength models	68
A5.1.	1 EBR systems	68
A5.1.	2 NSM systems	73
Appen	dix 5.2 – Special types of strengthening systems	76
A5.2.	1 Textile reinforced mortar (TRM) reinforcement	76
A5.2.	2 Steel fibre reinforced polymer (SFRP) reinforcement	77
A5.2.	3 Mechanically anchored or fastened systems	77
6. Ult	imate limit states for predominantly static	
loa	ding and fatigue	78
6.1 Ge	0 0	78
6.2 Ber	nding with or without axial force	78
6.2.1	Strengthening with externally bonded FRP for members	7.0
	subjected primarily to bending	78
6.2.2		90
6.2.3		93
6.2.4		99

6.3 Shea	ar		100
6.3.1	Gene	ral	100
6.3.2	Mem	bers not requiring design shear reinforcement	101
6.3.3	Mem	bers requiring design shear reinforcement	102
6.3.4	Shear	strengthening in relation to insufficient shear capacity	102
6.3.5	Shear	strengthening in relation to flexural debonding	105
6.4 Tors	ion		107
6.4.1	Gene	ral	107
6.4.2	Desig	n procedure	107
6.4.3	Comb	bined torsion and shear	108
6.5 Puno	ching		108
6.6 Desi	gn wit	h strut and tie models	108
6.7 Ancl	horage	s and laps	108
6.8 Fatig	gue		109
6.8.1	Gene	ral	109
6.8.2	Verifi	cation conditions	109
6.8.3	Exterr	nally bonded reinforcement	109
6.8.4	Near	surface mounted reinforcement	111
Append	ix 6.1	Cross section analysis at the ultimate limit state	111
Append	ix 6.2	Verification of debonding at intermediate	
		cracks according to the moment – shear	
		interaction diagram approach	112
Append	ix 6.3	Verification of debonding at intermediate	
rppend		cracks according to the shear transfer between	
		concrete and FRP approach	114
7 Som	vicoab		116
7. Serv 7.1 Gen		pility limit states	
			116
7.2 Stres		is a strange in the second of flow and strangether in a	117
7.2.1		rial stresses in the case of flexural strengthening limitations	117
7.2.2		limitations	118
7.3 Crac	0		119
7.3.1		control in RC members strengthened with EBR	119
7.3.2		control in RC members strengthened with NSM	122
7.4 Defl			123
7.5 Long	g term	ettects	125

8.	Ultimate limit states in seismic retrofitting	126
8.1	Global considerations	126
8.2	Practical implementation of global measures	128
	Strategies in FRP interventions for seismic applications	128
	3.1 Objectives in FRP retrofitting	129
8.	3.2 Determining the displacement demand of the	
	individual structural members	131
8.4	FRP as a means of enhancing strength and	
	deformation capacity	133
8.	4.1 Increasing flexural strength of RC members	
	by adding longitudinal FRP reinforcement	133
8.	4.2 Increasing the deformation capacity of reinforced	
	concrete members through FRP jacketing	138
8.5	Acceptance criteria and safety evaluation	143
8.	5.1 Rotation capacity and displacement ductility of	
	FRP-confined members	143
8.	5.2 Safety requirements	146
8.6 Dimensioning provisions to eliminate brittle failures		150
8.	6.1 Buckling of longitudinal bars	150
	6.2 Displacement ductility of FRP jacketed RC members	153
8.7	oints	154
Арр	endix 8.1 – Stiffness of global intervention elements	160
Арр	endix 8.2 – Practical implementation of global measures	161
Арр	endix 8.3 – Example on buckling of longitudinal bars	164
9. De	tailing	166
9.1	General	166
9.2	Detailing for strengthening with EBR FRP	166
	2.1 Beams	166
9.	2.2 Columns and walls	172
9.	2.3 Joints	177
9.	2.4 Protection of the FRP	177
9.3	Detailing for strengthening with NSM FRP	178
	3.1 General	178
9.	3.2 Beams	178
9.	3.3 Columns and walls	182

10.	Prac	tical execution and quality control	183
1().1	Techniques	183
	10.1.1	Basic technique (manual)	183
	10.1.2	Subsequent or special techniques	184
1().2	General requirements	184
1().3	Practical execution of surface bonded FRP	185
	10.3.1	Preceding repair	187
	10.3.2	Preparation works	187
	10.3.3	FRP application	189
	10.3.4	Finishing	191
1().4	Practical execution of near surface mounted FRP	191
	10.4.1	Preparation works	191
	10.4.2	NSM application	192
1().5	Quality control	192
	10.5.1	Characterization and quality control of the strengthening materials	192
	10.5.2	Qualification of workers	196
	10.5.3	Quality control on the practical execution	197
	10.5.4	Bond quality control after the practical execution	199
	10.5.5	In-service inspection and maintenance	201
Refe	erence	S	202
	Chapter	r 1	202
	Chapter	- 2	202
	Chapter	- 3	204
	Chapter	r 4	205
	Chapter	r 5	207
	Chapter	- 6	213
	Chapter	· 7	214
	Chapter		216
	Chapter		219
	Chapter		221
	Additio	nal references	223