Contents

Foreword i

1. General 1
 1.1 Introduction 1
 1.2 Externally applied reinforcement (EAR) 1
 1.3 Applications of EAR 2
 1.4 EAR basic application forms 4
 1.5 Aim and content of this report 4

2. Materials, systems and techniques 6
 2.1 Materials for EAR strengthening 6
 2.1.1 General 6
 2.1.2 Fibres 7
 2.1.3 Matrices 9
 2.1.4 FRP materials 9
 2.1.5 Adhesives for bonding EAR 12
 2.2 Externally applied reinforcement systems 13
 2.2.1 Cured in-situ systems 14
 2.2.2 Pre-cured (prefabricated) elements 14
 2.3 Techniques for EAR strengthening 15
 2.3.1 Basic FRP technique 15
 2.3.2 Subsequent or special techniques 15

3. Basis of design and structural analysis 25
 3.1 General 25
 3.2 Requirements 25
 3.2.1 Basic requirements 25
 3.2.2 Reliability management 26
 3.2.3 Design working life, durability and quality management 26
 3.3 Limit states design 26
 3.4 Basic variables: actions and environmental influences 27
 3.4.1 Actions 27
 3.4.2 Environmental influences 27
 3.5 Basic variables: material and product properties 27
 3.5.1 Geometrical properties 27
 3.5.2 Mechanical properties 28
 3.5.3 Technological properties 29
3.6 Verification by partial factor method
 3.6.1 General
 3.6.2 Stress-strain relationship for FRP and design values
 3.6.3 ULS verification of bond failure

3.7 Strategies for design
 3.7.1 Behavioural aspects
 3.7.2 Limit states governing the design
 3.7.3 Desirable failure modes at ultimate limit state (static actions)
 3.7.4 Deformation capacity at the ultimate limit state
 3.7.5 Accidental loss of FRP – degree of strengthening
 3.7.6 Impact of local strengthening on global behaviour and structural integrity
 3.7.7 Design flow charts

3.8 Structural analysis and design by testing
 3.8.1 Structural modelling
 3.8.2 Static actions and fatigue
 3.8.3 Dynamic actions
 3.8.4 Fire design and protection
 3.8.5 Design by testing

3.9 Additional considerations for seismic upgrading

4. Durability considerations
 4.1 General
 4.2 Creep, stress rupture and stress corrosion
 4.3 Temperature effects
 4.3.1 Glass transition temperature
 4.3.2 Service temperature
 4.3.3 Freeze-thaw
 4.3.4 Bond behaviour at high and low temperatures
 4.4 Moisture
 4.4.1 Effect of water absorption on FRP
 4.4.2 Moisture durability of an FRP-concrete system
 4.5 UV light exposure
 4.5.1 General
 4.5.2 Protection
 4.6 Alkalinity and acidity
 4.7 Lightning and galvanic corrosion
5. Bond

5.1 Bond behaviour

5.1.1 Differential equation of bond
5.1.2 Bond-slip law for surface bonded FRP
5.1.3 Bond-slip law for near surface mounted FRP

5.2 Debonding mechanisms for EBR systems

5.2.1 Debonding mechanisms in RC beams with flexural strengthening
5.2.2 Debonding due to unevenness

5.3 Safety verifications with respect to debonding of EBR systems

5.3.1 Effective bond length
5.3.2 Ultimate strength for debonding at the end anchorage zone
5.3.3 Ultimate strength for debonding at intermediate cracks
5.3.4 Effect of fatigue

5.4 Debonding mechanisms for NSM FRP systems

5.4.1 Debonding mechanisms
5.4.2 Debonding mechanisms in beams strengthened in flexure
5.4.3 Debonding mechanisms in beams strengthened in shear

5.5 Safety verifications with respect to debonding of NSM systems

5.5.1 Bond length
5.5.2 Ultimate strength for debonding
5.5.3 Effect of fatigue

5.6 Mechanical anchorages

Appendix 5.1 – Details on bond-slip relationships and strength models

A5.1.1 EBR systems
A5.1.2 NSM systems

Appendix 5.2 – Special types of strengthening systems

A5.2.1 Textile reinforced mortar (TRM) reinforcement
A5.2.2 Steel fibre reinforced polymer (SFRP) reinforcement
A5.2.3 Mechanically anchored or fastened systems

6. Ultimate limit states for predominantly static loading and fatigue

6.1 General
6.2 Bending with or without axial force

6.2.1 Strengthening with externally bonded FRP for members subjected primarily to bending
6.2.2 Flexural strengthening with near surface mounted strips
6.2.3 Strengthening columns through confinement
6.2.4 Strengthening columns in flexure
6.3 Shear
 6.3.1 General
 6.3.2 Members not requiring design shear reinforcement
 6.3.3 Members requiring design shear reinforcement
 6.3.4 Shear strengthening in relation to insufficient shear capacity
 6.3.5 Shear strengthening in relation to flexural debonding

6.4 Torsion
 6.4.1 General
 6.4.2 Design procedure
 6.4.3 Combined torsion and shear

6.5 Punching

6.6 Design with strut and tie models

6.7 Anchorages and laps

6.8 Fatigue
 6.8.1 General
 6.8.2 Verification conditions
 6.8.3 Externally bonded reinforcement
 6.8.4 Near surface mounted reinforcement

Appendix 6.1 Cross section analysis at the ultimate limit state
Appendix 6.2 Verification of debonding at intermediate cracks according to the moment – shear interaction diagram approach
Appendix 6.3 Verification of debonding at intermediate cracks according to the shear transfer between concrete and FRP approach

7. Serviceability limit states
 7.1 General
 7.2 Stresses
 7.2.1 Material stresses in the case of flexural strengthening
 7.2.2 Stress limitations
 7.3 Cracking
 7.3.1 Crack control in RC members strengthened with EBR
 7.3.2 Crack control in RC members strengthened with NSM
 7.4 Deflection control
 7.5 Long term effects
8. Ultimate limit states in seismic retrofitting

8.1 Global considerations

8.2 Practical implementation of global measures

8.3 Strategies in FRP interventions for seismic applications

8.3.1 Objectives in FRP retrofitting

8.3.2 Determining the displacement demand of the individual structural members

8.4 FRP as a means of enhancing strength and deformation capacity

8.4.1 Increasing flexural strength of RC members by adding longitudinal FRP reinforcement

8.4.2 Increasing the deformation capacity of reinforced concrete members through FRP jacketing

8.5 Acceptance criteria and safety evaluation

8.5.1 Rotation capacity and displacement ductility of FRP-confined members

8.5.2 Safety requirements

8.6 Dimensioning provisions to eliminate brittle failures

8.6.1 Buckling of longitudinal bars

8.6.2 Displacement ductility of FRP jacketed RC members

8.7 Joints

Appendix 8.1 – Stiffness of global intervention elements

Appendix 8.2 – Practical implementation of global measures

Appendix 8.3 – Example on buckling of longitudinal bars

9. Detailing

9.1 General

9.2 Detailing for strengthening with EBR FRP

9.2.1 Beams

9.2.2 Columns and walls

9.2.3 Joints

9.2.4 Protection of the FRP

9.3 Detailing for strengthening with NSM FRP

9.3.1 General

9.3.2 Beams

9.3.3 Columns and walls
10. Practical execution and quality control 183
 10.1 Techniques 183
 10.1.1 Basic technique (manual) 183
 10.1.2 Subsequent or special techniques 184
 10.2 General requirements 184
 10.3 Practical execution of surface bonded FRP 185
 10.3.1 Preceding repair 187
 10.3.2 Preparation works 187
 10.3.3 FRP application 189
 10.3.4 Finishing 191
 10.4 Practical execution of near surface mounted FRP 191
 10.4.1 Preparation works 191
 10.4.2 NSM application 192
 10.5 Quality control 192
 10.5.1 Characterization and quality control of the strengthening materials 192
 10.5.2 Qualification of workers 196
 10.5.3 Quality control on the practical execution 197
 10.5.4 Bond quality control after the practical execution 199
 10.5.5 In-service inspection and maintenance 201

References 202
 Chapter 1 202
 Chapter 2 202
 Chapter 3 204
 Chapter 4 205
 Chapter 5 207
 Chapter 6 213
 Chapter 7 214
 Chapter 8 216
 Chapter 9 219
 Chapter 10 221
 Additional references 223