Contents

Preface		
1. l	ntroduction	1
2. F	equirements for concrete structures in terms of SLS	3
2.1 li	ntroduction	3
2.2 S	erviceability limit states criteria	3
2.2	.1 Stress limitation	3
2.2	.2 Cracking and crack width	4
2.2	.3 Deformations of concrete structures	5
2.2	.4 Vibrations	5
2.3 Analysis of Serviceability Limit States		5
2.3	.1 Stress analysis	6
2.3	.2 Crack width analysis	6
2.3	.3 Deformation analysis	7
3. E	Design criteria of serviceability limit states	9
3.1 S	tress limits	9
3.2 0	rack width	10
3.3 E	Deformation criteria	11
3.4 Vibrations		12
4. Rules and explanations		13
4.1 C	alculation of stresses	13
4.1	.1 RC sections	14
4.1	.2 PC sections	21
4.2 Cracking		30
4.2	.1 Bending cracks	30
4.2	.2 Shear cracks	48
4.2	.3 Cracks induced by deformation restraint	52
4.2	.4 Cracks in prestressed concrete structures	56
4.2	.5 Control of cracking without calculation	60
4.2	.6 Cracks in orthogonally reinforced elements	63
4.3 E	Deflections of concrete structures	70
4.3	.1 Calculation of deflections due to bending	72
4.3	.2 Deflection due to shear	91
5. E	xamples	93
5.1 S	tress and deflection analysis of a prestressed concrete beam	93
5.1	.1 Stress analysis	93
5.1	.2 Deflection analysis	96
5.2 P	artially prestressed beam – cracking	99

5.3 Crac	king due to shear	101
5.3.1	Experiment - Description of the structure	101
5.3.2	Numerical analysis of the formation of the first shear crack	102
5.3.3	Comparison of numerical and experimental results	103
5.3.4	Conclusions	104
5.4 Exan	nple for Combination of Restraint and Load Action	105
5.5 Desi	gn of watertight wall	109
5.5.1	Assumptions	110
5.5.2	SLS Design according to Model Code 2010 7.6.4.4	111
5.5.3	Discussion	114
5.5.4	Evenly spaced construction joints	114
5.5.5	On-site experience	115
5.6 Defle	ection analysis	115
5.6.1	Example of application of the general method	115
5.6.2	Example of application of simplified methods. Deflection control of a reinforced concrete slab	120
5.6.3	Solution of the problem by the General Sectional Method	124
5.6.4	General Method and Comparison of results	127
6. Out	look on serviceability limit states	130
6.1 Defle	ections of prestressed concrete beams	130
6.1.1	Slenderness limits	131
6.1.2	Basic assumptions for the parametric analysis	131
6.1.3	Parametric analysis	133
6.1.4	Conclusions	143
6.2 Shea	r effects on deflections	144
6.2.1	Introduction	144
6.2.2	Experimental background	145
6.2.3	Review of theoretical models for the calculation of the deformation of a macro-element of the beam block due to bending and shear	150
6.2.4	Calculation of the deflection of the beam due to bending and shear	155
6.2.5	Practical evaluation of the influence of shear on deflection	155
6.3 Slen	derness limits	163
6.3.1	How slenderness limits are determined	163
6.3.2	Refining the model	164
6.4 The	crack width along the concrete cover	
of re	inforced concrete	171
6.4.1	General considerations of crack width and bond in concrete	171
6.4.2	Crack width along the concrete cover	176
6.4.3	Conclusions and recommendations	186

7. Verification of serviceability limit states by	
numerical simulation	188
7.1 Introduction	188
7.2 Crack model based on fracture mechanics	189
7.3 Crack model based on tension stiffening	192
8. Conclusions	194
References	196
Chapter 2	196
Chapter 3	196
Chapter 4	196
Chapter 5	199
Chapter 6	200
Chapter 7	201
Chapter 8	