Contents

Preface i

1. Introduction 1
 1.1 Definition 1
 1.2 Historical Development 1
 1.3 State of the Art of External Tendons 5
 1.3.1 External tendon types 5
 1.4 Advantages and Disadvantages of External Tendons 7
 1.4.1 Advantages 7
 1.4.2 Disadvantages 7
 1.5 Terms and Definitions 7

2. Primary components of External Tendons 10
 2.1 Tensile elements 11
 2.1.1 Strands 11
 2.1.2 Wires 11
 2.1.3 Bars 12
 2.2 Ducts 12
 2.2.1 Polymeric ducts 12
 2.2.2 Steel ducts 13
 2.3 Anchorages 14
 2.4 Couplers 15
 2.5 Anchorage Caps 16
 2.6 Deviators 16
 2.6.1 Inserts in straight recess pipes or bore holes 18
 2.6.2 Deviators directly cast in the concrete for bundled deviation 18
 2.6.3 Deviators directly cast in the concrete for single strand deviation 20
 2.7 Fixations 20

3. Durability of External Tendons 22
 3.1 Corrosion protection for External Tendons 22
 3.1.1 Exposure 22
 3.1.2 Protection measures of prestressing steel 22
 3.1.3 Corrosion protection for anchorages 23
 3.1.4 Protection strategies 24
 3.1.5 Lessons learned 25
 3.2 Resistance of prestressing steel when deviated 27
3.3 Wear of polymer duct at deviators
 3.3.1 Cable factor (transverse pressure at individual tensile elements)
 3.3.2 Friction and wear when stressing
3.4 Fire resistance

4. Design and detailing aspects
 4.1 General approach to design
 4.2 Action on the structure by External Tendons
 4.2.1 Initial prestressing force
 4.2.2 Losses of prestressing force
 4.2.3 Force acting at deviation points
 4.2.4 Local forces at deviation points
 4.2.5 Stress increase in ULS
 4.2.6 Calculation of acting forces
 4.2.7 Anchorage and deviation blocks
 4.3 Minimum deviation radius
 4.4 Provision for future tendons

5. Fabrication, Installation and Replacement
 5.1 Tendon fabrication
 5.1.1 On-site assembly
 5.1.2 Partial prefabrication
 5.1.3 Full prefabrication
 5.2 Temporary corrosion protection measures
 5.3 Jobsite activities before tendon installation
 5.4 Tendon installation
 5.4.1 On-site assembled tendons
 5.4.2 Partially prefabricated tendons
 5.4.3 Fully prefabricated tendons
 5.5 Stressing
 5.6 Duct filling method
 5.6.1 Full or partial prefabrication
 5.6.2 On-site fabrication
 5.7 Final works
 5.8 Documentation
 5.9 Replacement of external tendons
 5.9.1 Replacement of grouted External Tendons
 5.9.2 Replacement of external tendons with soft filler
6. Approval Testing
 6.1 Resistance to static load test
 6.1.1 Verification of anchorages
 6.1.2 Verification of deviation zones with small radii of curvature
 6.2 Resistance to fatigue load test
 6.3 Load transfer to the structure test
 6.4 Deviated tendon test verifying the corrosion protection barriers
 6.5 Assembly / installation / stressing test
 6.6 Duct filling test

7. Quality Assurance, Inspection and Monitoring
 7.1 Quality assurance
 7.1.1 Quality plan
 7.1.2 Quality control testing on components performed by the manufacture
 7.1.3 External surveillance for components
 7.1.4 Traceability
 7.1.5 Quality control of the execution
 7.2 Regular and special inspections of external tendons
 7.2.1 Regular inspection
 7.2.2 Special inspection – Load measurement
 7.2.3 Special inspection – Durability assessment
 7.3 Long-term monitoring
 7.3.1 Monitoring of prestressing force
 7.3.2 Monitoring of electrical isolation
 7.3.3 Acoustic Emission Measurements

8. Application in bridge construction and repair
 8.1 General
 8.2 Concrete bridges
 8.2.1 Use of combined internal and external tendons in cast-in-place bridges
 8.2.2 Use of internal and external tendons in precast bridges
 8.2.3 Use of only external tendons in cast-in-place bridges
 8.2.4 Use of only external tendons for precast bridges
 8.3 Structures made of Ultra High Performance Concrete
 8.4 Structural steel and composite structures
 8.5 Strengthening of existing structures
 8.5.1 Strengthening with longitudinal tendons
 8.5.2 Strengthening with transverse tendons

9. References