Contents

Foreword ii

1. Scope 1

2. Introduction 2

3. Input—General design considerations 4
 3.1 Layout 5
 3.2 Geological and geotechnical factors 6
 3.3 Codes 6
 3.4 Construction factors 6
 3.5 Aesthetics 7
 3.6 Environmental factors 8
 3.7 Sustainability 8
 3.8 Maintenance 8
 3.9 Economy 9
 3.10 Safety in construction, operation, and maintenance 9
 3.11 Other considerations 9

4. Activities—Preliminary Design Guidelines 10
 4.1 Scope 10
 4.2 General Design Considerations for Selecting Precast Concrete Girder Systems 10
 4.2.1 Girder length and depth 10
 4.2.2 Girder spacing arrangement 14
 4.3 Preliminary design 14
 4.4 Continuity methods 15
 4.4.1 Conventional deck reinforcement 16
 4.4.2 Continuous bridge using threaded rods 17
 4.5 Spliced girders 18

5. Output—Examples From Several Countries 20
 5.1 Example 1: bridge with five 30 m (98 ft) long spans in Belgium 27
 5.1.1 Considerations identified 27
 5.1.2 Proposed solution 27
 5.1.3 Superstructure 29
 5.1.4 Construction sequence 35
 5.1.5 Substructure 36
5.2 Example 2: bridge with ten 15 m (49 ft) long spans in Belgium
5.2.1 Considerations identified
5.2.2 Proposed solution
5.2.3 Superstructure
5.3 Example 3: bridge with three 50 m (164 ft) long spans in Belgium
5.3.1 Considerations identified
5.3.2 Proposed solution
5.3.3 Superstructure
5.4 Example 4: Bridge with ten 15 m (49 Ft) long spans in Brazil
5.4.1 Considerations identified
5.4.2 Proposed solution
5.4.3 Superstructure
5.4.4 Superstructure construction sequence
5.5 Example 5: bridge with six 25 m (82 ft) long spans in Brazil
5.5.1 Considerations identified
5.5.2 Proposed solution
5.5.3 Superstructure
5.5.4 Construction sequence
5.6 Example 6: bridge with four 37.5 m (123 ft) long spans in Brazil
5.6.1 Considerations identified
5.6.2 Proposed solution
5.6.3 Superstructure
5.6.4 Construction sequence
5.6.5 Substructure
5.7 Example 7: bridge with ten 16 m (52 ft) long spans in China
5.7.1 Considerations identified
5.7.2 Proposed solution
5.7.3 Superstructure
5.8 Example 8: bridge with five 30 m (98 ft) long spans in China
5.8.1 Considerations identified
5.8.2 Proposed solution
5.8.3 Superstructure
5.9 Example 9: bridge with four 40 m (131 ft) long spans in China
 5.9.1 Considerations
 5.9.2 Proposed solution
 5.9.3 Superstructure

5.10 Example 10: Bridge with Six 25 m (82 ft) long spans in France
 5.10.1 Considerations identified
 5.10.2 Proposed solution
 5.10.3 Superstructure
 5.10.4 Construction sequence

5.11 Example 11: bridge with five 30 m (98 ft) long spans in Italy
 5.11.1 Considerations identified
 5.11.2 Proposed solution
 5.11.3 Superstructure
 5.11.4 Construction sequence
 5.11.5 Substructure

5.12 Example 12: bridge with ten 15 m (49 ft) long spans in Japan
 5.12.1 Considerations identified
 5.12.2 Proposed solution
 5.12.3 Superstructure
 5.12.4 Construction sequence

5.13 Example 13: bridge with six 25 m (82 ft) long spans in Japan
 5.13.1 Considerations identified
 5.13.2 Proposed solution
 5.13.3 Superstructure
 5.13.4 Construction sequence

5.14 Example 14: bridge with four 40 m (131 ft) long spans in Japan
 5.14.1 Considerations identified
 5.14.2 Proposed solution
 5.14.3 Superstructure
 5.14.4 Construction sequence
5.15 Example 15: bridge with ten 15 m (49 ft) long spans in Malaysia using UHPFRC

5.15.1 Considerations identified
5.15.2 Proposed solution
5.15.3 Superstructure
5.15.4 Substructure
5.15.5 Transverse slopes
5.15.6 Transverse diaphragms
5.15.7 Summary of the preliminary design
5.15.8 Construction sequence

5.16 Example 16: bridge with ten 15 m (49 ft) long spans in Malaysia using UHPFRC

5.16.1 Considerations identified
5.16.2 Proposed solution
5.16.3 Superstructure
5.16.4 Substructure
5.16.5 Transverse slopes
5.16.6 Transverse diaphragms
5.16.7 Summary of the preliminary design
5.16.8 Construction sequence

5.17 Example 17: bridge with ten 25 m (82 ft) long spans in Malaysia using UHPFRC

5.17.1 Considerations identified
5.17.2 Proposed solution
5.17.3 Superstructure
5.17.4 Substructure
5.17.5 Transverse slopes
5.17.6 Transverse diaphragms
5.17.7 Summary of the preliminary design
5.17.8 Construction sequence

5.18 Example 18: Bridge with three 50 m (164 ft) long spans in Malaysia using UHPFRC

5.18.1 Considerations identified
5.18.2 Proposed solution
5.18.3 Superstructure
5.18.4 Substructure
5.18.5 Transverse slopes
5.18.6 Transverse diaphragms
5.18.7 Summary of the preliminary design
5.18.8 Construction sequence
5.19 Example 19: bridge with ten 15 m (49 ft) spans in New Zealand

5.19.1 Considerations identified
5.19.2 Proposed solution
5.19.3 Superstructure
5.19.4 Substructure

5.20 Example 20: bridge with five 30 m (98 ft) long spans in New Zealand

5.20.1 Considerations identified
5.20.2 Proposed solution
5.20.3 Superstructure
5.20.4 Substructure

5.21 Example 21: bridge with two 30 m (98 ft) long spans in Spain

5.21.1 Considerations identified
5.21.2 Proposed solution
5.21.3 Superstructure

5.22 Example 22: bridges with 18.75 m (61.52 ft) long spans and 35 m (115 ft) long spans in the United Kingdom

5.22.1 Considerations identified
5.22.2 Proposed solution
5.22.3 Superstructure
5.22.4 Substructure

5.23 Example 23: bridge with a single 25.9 m (85 ft) long span in the United States

5.23.1 Considerations identified
5.23.2 Proposed solution
5.23.3 Key design challenges
5.23.5 Summary of the preliminary design

5.24 Example 24: bridge with six spans, two 41.15 m (135 ft) and four 53.54 m (175.6 ft) in the United States

5.24.1 Considerations identified
5.24.2 Proposed solution
5.24.3 Summary of the preliminary design
5.25 Example 25: bridge with two 40 m (131 ft) long spans in South Korea
5.25.1 Considerations identified
5.25.2 Proposed solution
5.25.3 Superstructure
5.25.4 Construction sequence

5.26 Example 26: bridge with two 50 m (164 ft) long spans in South Korea
5.26.1 Considerations identified
5.26.2 Proposed solution
5.26.3 Superstructure
5.26.4 Construction sequence

5.27 Example 27: bridge with a single 60 m (197 ft) long span in South Korea
5.27.1 Considerations identified
5.27.2 Proposed solution
5.27.3 Superstructure

5.28 Example 28: bridge with ten 35 m (115 ft) long spans in Portugal
5.28.1 Considerations identified
5.28.2 Proposed solution
5.28.3 Superstructure
5.28.4 Construction sequence

6. Final Considerations

A. Appendix A: Preliminary design charts for different precast concrete sections used in the United States
A.1 Assumed data for preliminary design charts
A.1.1 Bridge data
A.1.2 Load data
A.1.3 Concrete data
A.1.4 Reinforcement data
A.2 Girder profiles
A.2.1 AASHTO solid and voided slab beams
A.2.2 AASHTO box girders
A.2.3 AASHTO I-girders
A.2.4 AASHTO-PCI bulb tees
A.2.5 PCEF bulb tees (XB yy 47)
A.3 Description of charts 242
A.2.7 NU I-girder 242
A.3.1 Voided slab beams 243
A.3.3 I-girders 244
A.3.4 AASHTO I-girder 244
A.3.5 AASHTO-PCI bulb tee 245
A.3.6 PCEF bulb tee 245
A.3.7 NU I-girders 247

B. Appendix B: Preliminary design criteria used in Spain 250
B.1 Sections and slenderness 250
B.2 Construction procedures 252
B.3 Application range 252
B.4 Reinforcement ratios 252

C. Appendix C: Comparison of Vertical Live loads 253
C.1 Eurocode 1 253
C.2 AASHTO 255
C.3 NBR 7178 256
C.4 Results 256
C.4.1 Bending moments 258
C.4.2 Shear force 259
C.4.3 Torsion 260

D. Appendix D: Summary Table of Preliminary Design Examples 261

References 266
Chapter 2 266
Chapter 3 266
Chapter 4 267
Chapter 5 267
Appendix A 269
Appendix B 269
Appendix C 269