Contents

Fore	eword		ii
1.	Sco	ре	1
2.	Intro	oduction	2
3.	Inpu	ut—General design considerations	4
3.	•	Layout	5
3.	2	Geological and geotechnical factors	6
3.	3	Codes	6
3.	4	Construction factors	6
3.	5	Aesthetics	7
3.	6	Environmental factors	8
3.	7	Sustainability	8
3.	8	Maintenance	8
3.	9	Economy	9
3.	10	Safety in construction, operation, and maintenance	9
3.		Other considerations	9
4.	Acti	vities—Preliminary Design Guidelines	10
4.		Scope	10
4.		General Design Considerations for Selecting	
	_	Precast Concrete Girder Systems	10
	4.2.1	Girder length and depth	10
	4.2.2	Girder spacing arrangement	14
4.	3	Preliminary design	14
4.	4	Continuity methods	15
	4.4.1	Conventional deck reinforcement	16
	4.4.2	Continuous bridge using threaded rods	17
4.	5	Spliced girders	18
5.	Out	put—Examples From Several Countries	20
5.	1	Example 1: bridge with five 30 m (98 ft) long	
		spans in Belgium	27
	5.1.1	Considerations identified	27
	5.1.2	Proposed solution	27
	5.1.3	Superstructure	29
	5.1.4	Construction sequence	35
	5.1.5	Substructure	36

5.2	Example 2: bridge with ten 15 m (49 ft) long	
	spans in Belgium	37
5.2.1	Considerations identified	37
5.2.2	Proposed solution	38
5.2.3	Superstructure	39
5.3	Example 3: bridge with three 50 m (164 ft) long	
	spans in Belgium	41
5.3.1	Considerations identified	41
5.3.2	Proposed solution	42
5.3.3	Superstructure	43
5.4	Example 4: Bridge with ten 15 m (49 Ft) long	
	spans in Brazil	45
5.4.1	Considerations identified	45
5.4.2	Proposed solution	46
5.4.3	Superstructure	47
5.4.4	Superstructure construction sequence	50
5.5	Example 5: bridge with six 25 m (82 ft) long spans	
	in Brazil	50
5.5.1	Considerations identified	51
5.5.2	Proposed solution	51
5.5.3	Superstructure	53
5.5.4	Construction sequence	57
5.6	Example 6: bridge with four 37.5 m (123 ft) long	
	spans in Brazil	58
5.6.1	Considerations identified	58
5.6.2	Proposed solution	58
5.6.3	Superstructure	60
5.6.4	Construction sequence	64
5.6.5	Substructure	65
5.7	Example 7: bridge with ten 16 m (52 ft) long spans	
	in China	66
5.7.1	Considerations identified	66
5.7.2	Proposed solution	66
5.7.3	Superstructure	67
5.8	Example 8: bridge with five 30 m (98 ft) long spans	
	in China	71
5.8.1	Considerations identified	71
5.8.2	Proposed solution	71
5.8.3	Superstructure	72

5.9	Example 9: bridge with four 40 m (131 ft) long spans in China	77
5.9.1	Considerations	77
5.9.2	Proposed solution	77
5.9.3	Superstructure	78
5.10	Example 10: Bridge with Six 25 m (82 ft) long spans	
	in France	88
5.10.1	Considerations identified	88
5.10.2	Proposed solution	88
5.10.3	Superstructure	91
5.10.4	Construction sequence	94
5.11	Example 11: bridge with five 30 m (98 ft) long spans	
	in Italy	95
5.11.1	Considerations identified	96
5.11.2	Proposed solution	96
5.11.3	Superstructure	99
5.11.4	Construction sequence	102
5.11.5	Substructure	103
5.12	Example 12: bridge with ten 15 m (49 ft) long spans	
	in Japan	104
5.12.1	Considerations identified	104
5.12.2	Proposed solution	104
5.12.3	Superstructure	106
5.12.4	Construction sequence	109
5.13	Example 13: bridge with six 25 m (82 ft) long spans	
	in Japan	110
5.13.1	Considerations identified	110
5.13.2	Proposed solution	110
5.13.3	Superstructure	112
5.13.4	Construction sequence	115
5.14	Example 14: bridge with four 40 m (131 ft) long spans	
	in Japan	117
5.14.1	Considerations identified	117
5.14.2	Proposed solution	117
5.14.3	Superstructure	119
5.14.4	Construction sequence	122

5.15	Example 15: bridge with ten 15 m (49 ft) long spans	
	in Malaysia using UHPFRC	124
5.15.1	Considerations identified	125
5.15.2	Proposed solution	125
5.15.3	Superstructure	127
5.15.4	Substructure	130
5.15.5	Transverse slopes	134
5.15.6	Transverse diaphragms	134
5.15.7	Summary of the preliminary design	135
5.15.8	Construction sequence	135
5.16	Example 16: bridge with ten 15 m (49 ft) long	
	spans in Malaysia using UHPFRC	137
5.16.1	Considerations identified	137
5.16.2	Proposed solution	137
5.16.3	Superstructure	139
5.16.4	Substructure	142
5.16.5	Transverse slopes	145
5.16.6	Transverse diaphragms	145
5.16.7	Summary of the preliminary design	146
5.16.8	Construction sequence	146
5.17	Example 17: bridge with ten 25 m (82 ft) long	
	spans in Malaysia using UHPFRC	147
5.17.1	Considerations identified	147
5.17.2	Proposed solution	148
5.17.3	Superstructure	150
5.17.4	Substructure	152
5.17.5	Transverse slopes	155
5.17.6	Transverse diaphragms	156
5.17.7	Summary of the preliminary design	157
5.17.8	Construction sequence	157
5.18	Example 18: Bridge with three 50 m (164 ft) long	
	spans in Malaysia using UHPFRC	162
5.18.1	Considerations identified	164
5.18.2	Proposed solution	164
5.18.3	Superstructure	165
5.18.4	Substructure	167
5.18.5	Transverse slopes	171
5.18.6	Transverse diaphragms	171
5.18.7	Summary of the preliminary design	172
5.18.8	Construction sequence	173

5.19	Example 19: bridge with ten 15 m (49 ft) spans	
	in New Zealand	176
5.19.1	Considerations identified	176
5.19.2	Proposed solution	177
5.19.3	Superstructure	178
5.19.4	Substructure	181
5.20	Example 20: bridge with five 30 m (98 ft) long	
	spans in New Zealand	181
5.20.1	Considerations identified	182
5.20.2	Proposed solution	182
5.20.3	Superstructure	183
5.20.4	Substructure	185
5.21	Example 21: bridge with two 30 m (98 ft) long	
	spans in Spain	186
5.21.1	Considerations identified	186
5.21.2	Proposed solution	186
5.21.3	Superstructure	188
5.22	Example 22: bridges with 18.75 m (61.52 ft) long spans	
	and 35 m (115 ft) long spans in the United Kingdom	190
5.22.1	Considerations identified	190
5.22.2	Proposed solution	191
5.22.3	Superstructure	195
5.22.4	Substructure	200
5.23	Example 23: bridge with a single 25.9 m (85 ft) long	
	span in the United States	201
5.23.1	Considerations identified	201
5.23.2	Proposed solution	201
5.23.3	Key design challenges	210
5.23.5	Summary of the preliminary design	212
5.24	Example 24: bridge with six spans, two 41.15 m (135 ft)	
	and four 53.54 m (175.6 ft) in the United States	212
5.24.1	Considerations identified	213
5.24.2	Proposed solution	213
5.24.3	Summary of the preliminary design	219

5.25	Example 25: bridge with two 40 m (131 ft) long	
	spans in South Korea	219
5.25.1	Considerations identified	220
5.25.2	Proposed solution	220
5.25.3	Superstructure	221
5.25.4	Construction sequence	222
5.26	Example 26: bridge with two 50 m (164 ft) long	
	spans in South Korea	223
5.26.1	Considerations identified	223
5.26.2	Proposed solution	223
5.26.3	Superstructure	224
5.26.4	Construction sequence	225
5.27	Example 27: bridge with a single 60 m (197 ft)	
	long span in South Korea	226
5.27.1	Considerations identified	226
5.27.2	Proposed solution	226
5.27.3	Superstructure	228
5.28	Example 28: bridge with ten 35 m (115 ft)	
	long spans in Portugal	229
5.28.1	Considerations identified	229
5.28.2	Proposed solution	230
5.28.3	•	231
5.28.4	Construction sequence	234
6. Fina	l Considerations	236
А. Арр	endix A: Preliminary design charts for	
diffe	erent precast concrete sections used in	
the	United States	237
A.1	Assumed data for preliminary design charts	237
A.1.1	Bridge data	237
A.1.2	Load data	237
A.1.3	Concrete data	237
A.1.4	Reinforcement data	237
A.2	Girder profiles	237
A.2.1	AASHTO solid and voided slab beams	238
A.2.2	AASHTO box girders	238
A.2.3	AASHTO I-girders	239
A.2.4	AASHTO-PCI bulb tees	240
A.2.5	PCEF bulb tees (XB yy 47)	241

A.3	Description of charts	242
A.2.7	A.2.7 NU I-girder	
A.3.1	Voided slab beams	243
A.3.3	I-girders	244
A.3.4	AASHTO I-girder	244
A.3.5	AASHTO-PCI bulb tee	245
A.3.6	PCEF bulb tee	245
A.3.7	NU I-girders	247
В. Ар	pendix B: Preliminary design criteria	
use	ed in Spain	250
B.1	Sections and slenderness	250
B.2	Construction procedures	252
B.3	Application range	252
B.4	Reinforcement ratios	252
C. Ap	pendix C: Comparison of Vertical Live lo	ads 253
C.1	Eurocode 1	253
C.2	AASHTO	255
C.3	NBR 7178	256
C.4	Results	256
C.4.1	Bending moments	258
C.4.2	Shear force	259
C.4.3	Torsion	260
D. Ap	pendix D: Summary Table of Preliminary	
De	sign Examples	261
Reference	ces	266
Chapter 2		266
Chapte	Chapter 3	
Chapter 4		267
Chapter 5		267
Appendix A		269
Append		269
Appendix C		269