• Latest news

    Latest news

  • Latest news

    Latest news

  • Home
  • Blog
  • Registration Open for Multi-Span Large Bridges Conference

Structural Concrete, Vol. 5, no. 4, December 2004

Direct design of hollow reinforced concrete beams. Part II: experimental investigation

A. S. Alnauimi, Sultan Qaboos University, Sultanate of Oman
P. Bhatt, University of Glasgow, UK

Tests were conducted on eight reinforced concrete hollow beams subjected to combined load of bending, shear and torsion. The beams were designed using the direct design method that was discussed in Part I. All beams had an overall cross-section dimension of 300 300 mm with a wall thickness of 50 mm. The overall length of the beam was 3800 mm. The two main variables in the series were the ratio in the web of the maximum elastic shear stress due to twisting moment to elastic shear stress due to shear force which varied between 0.59 and 6.84, and the ratio of the maximum twisting moment to the bending moment which varied between 0.19 and 2.62. The beams were experimentally tested in the University of Glasgow, Scotland, UK. Good agreement was found between the design and experimental failure loads. All beams failed near the design loads and had undergone ductile behaviour until failure. The results indicate that the direct design method can be successfully used to design reinforced concrete box beams for the combined effect of bending, shear and torsion loads.

fib postal address

Case postale 88
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

 Follow us on
        

Join the fib

Join the fib