• COM5: Reinforcements

    COM5: Reinforcements

  • COM5: Reinforcements

    COM5: Reinforcements

Motivation

fib Commission 5 (COM5) gathers a balanced mix of experts coming from various fields (academics, owners, suppliers, government agencies and testing laboratories) who are volunteering their work into several task groups aiming to provide knowledge and information to students and the professional workforce for the best use of concrete.

Scope and objective of technical work

The scope of COM5 is to promote the technology for reinforcing and prestressing materials and systems and to improve their quality. This includes aspects from design, production, testing, up to the installation and final use of these materials and systems. The scope also includes maintaining and improving dialogue between producers, specifiers, and users of these materials and systems.

Finally, COM5 encourages new research and developments within its scope.

 

Antonio CaballeroCommission Chair
Antonio Caballero
Hermann WeiherDeputy Chair
Hermann Weiher

First name Last name Country Affiliation
Hans Rudolf Ganz Switzerland Ganz Consulting
Josée Bastien Canada University Laval
Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
Ulf Nürnberger Germany University of Stuttgart
Kiyotaka Hosoi Japan Shinko Wire Company Ltd
Pedro Almeida Brazil Sao Paulo University
Larry Krauser United States General Technologies, Inc.
Tommaso Ciccone Italy TENSA (Tensacciai s.r.l.)
Werner Brand Germany DYWIDAG-Systems International
Antonio Caballero Switzerland BBR VT international Ltd.
Carol Hayek United States CCL
Guillermo Ramirez Switzerland VSL International Ltd
Randall Poston United States Pivot Engineers
Christian Gläser Germany DYWIDAG-Systems International
Teddy Theryo United States Florida Department of Transportation
Manuel Elices Calafat Spain Universidad Politecnica de Madrid
Jan Piekarski Poland BBR Polska Sp. z o. o.
David Fernández-Ordóñez Switzerland fib
Theodore Neff United States General Technologies, Inc.
Jaime Gálvez Ruiz Spain Universidad Politecnica de Madrid
Jan Winkler Denmark Atkins
Hiroshi Mutsuyoshi Japan Saitama University , Fac. of Eng.
Hermann Weiher Germany matrics engineering GmbH
James Collins United Kingdom Ramboll
Alex Gutsch Germany MPA Braunschweig
Stijn Matthys Belgium Ghent University
Josiane Piron Belgium SPW MI – Service public de Wallonie Mobilité et Infrastructures
Dong Xu China Tongji University
Tony Johnson United States PTI
Shinya Ikehata Japan Central Nippon Expressway Co Ltd
Sven Junge Germany ISB Institut für Stahlbetonbewehrung e.V.
Behzad Manshadi Switzerland BBR VT International Ltd

  • TG5.1 - FRP Reinforcement for concrete structures

    The main objectives of TG5.1 are:

    • The elaboration of design guidelines in accordance with the design format of the fib Model Code for Concrete Structures 2010 (“fib MC2010”) and Eurocode 2.
    • Link with other initiatives regarding material testing and characterisation & development of standard test methods.
    • Participation in the international forum in the field of advanced composite reinforcement, stimulating the use of FRP for concrete structures.
    • Guidance on practical execution of concrete structures reinforced/prestressed/strengthened by FRP.


    Stijn MatthysConvener
    Stijn Matthys

    • WP5.1.1 - Prestressing with FRP
       
      FRP reinforcements have the benefit of being non-susceptible to corrosion and having high strength. To utilize the high strength of FRP, it is of particular interest to also use them in prestressing applications. This results in prestressed concrete structures, making use of FRP prestressing reinforcement, with a unique combination of high-end mechanical and durability performance.
       
      The proposed bulletin would be a state-of-the-art report which special focus on the two different topics:
      • Prestressed FRP for new structures
      • Prestressing of FRP for strengthening purpose of RC and PC

      Renata KotyniaConvener
      Renata Kotynia
      Christoph CzaderskyConvener
      Christoph Czadersky

      First name Last name Country Affiliation
      Renata Kotynia Poland Lodz University of Technology
      Christoph Czaderski-Forchmann Switzerland EMPA, Structural Engineering
      David Fernández-Ordóñez Switzerland fib
      Leonardo Todisco Spain E.T.S.I. Caminos, Canales y Puertos
      Ted Donchev United Kingdom Kingston University
      Stijn Matthys Belgium Ghent University
      Nicola Nistico Italy Sapienza Università di Roma
      Eva Oller Ibars Spain Technical University of Catalonia
      Mohammadali Rezazadeh Portugal University of Minho
      José Manuel de Sena Cruz Portugal University of Minho
      Eythor Thorhallsson Iceland Reykjavik University

    • WP5.1.2 - FRP internal reinforcement
       
      TBD

      TBDConvener
      TBD
      TBDConvener
      TBD

    • WP5.1.3 - Strengthening by FRP
       
      TBD

      TBDConvener
      TBD
      TBDConvener
      TBD

    First name Last name Country Affiliation
    György L. Balázs Hungary Budapest Univ. of Techn. & Economics
    Francesca Ceroni Italy Universitá degli Studi di Napoli
    Voula (S.J.) Pantazopoulou Canada The Lassonde Faculty of Engineering, York University
    Emidio Nigro Italy Università degli Studi di Napoli Federico II
    Andreea Serbescu United Kingdom University of Sheffield+ Amey consulting
    Dionysios Bournas United Kingdom Nottingham University
    Cristina Barris Spain University of Girona
    Valter Carvelli Italy Politecnico di Milano
    Tommaso D’Antino Greece University of Patras
    Emmanuel Ferrier France Université Lyon 1
    Reyes Garcia Lopez United Kingdom School of Engineering, University of Warwick
    Marcin Haffke Germany TU Kaiserslautern
    Tomislav Kisicek Croatia University of Zagreb
    Nicola Nistico Italy Sapienza Università di Roma
    Alessandro Proia Belgium Ghent University
    José Manuel de Sena Cruz Portugal University of Minho
    Ted Donchev United Kingdom Kingston University
    Matthias Pahn Germany University of Kaiserslautern
    Francesco Esposito Italy ATP s.r.l
    Christoforos Kolyvas Greece FYFE EUROPE S.A.
    Douglas Gremel United States Owens Corning
    Antonio Nanni Italy Univ. degli Studi di Napoli Federico II
    Björn Täljsten Sweden Luleå University of Technology
    Maria Rosaria Pecce Italy Università del Sannio
    Andrea Prota Italy Universita di Napoli Federico II
    Thierry Berset Switzerland SIKA Services AG
    Konrad Zilch Germany TU München
    Antonio Bilotta Italy University of Naples Federico II
    Carlos Ospina United States WSP USA Inc.
    Scott Smith Australia The University of Adelaide
    Eythor Thorhallsson Iceland Reykjavik University
    André Weber Germany Schöck Bauteile GmbH
    Matteo Di Benedetti United Kingdom University of Sheffield
    Szymon Cholostiakow United Kingdom University of Sheffield
    Thanasis Triantafillou Greece University of Patras
    Eva Oller Ibars Spain Technical University of Catalonia
    David Fernández-Ordóñez Switzerland fib
    Lluis Torres Spain University of Girona
    B. Kriekemans Belgium Fortius
    Sándor Sólyom Hungary Budapest Univ. of Techn. & Economics
    Vanessa Buchin Roulie Switzerland VSL INTERNATIONAL
    Viktor Gribniak Lithuania Vilnius Gediminas Technical University
    Tamon Ueda China Shenzhen University
    Stijn Matthys Belgium Ghent University
    Renata Kotynia Poland Lodz University of Technology
    Vesna Raicic United Kingdom University of Bath
    Ana Veljkovic Italy Politecnico di Milano
    Giuseppe Vago Italy ATP s.r.l
    Maurizio Guadagnini United Kingdom University of Sheffield
    Theodoros Rousakis Greece Democritus University of Thrace
    Lampros Koutas Greece University of Thessaly
    Joaquim A. O. Barros Portugal Universidade do Minho
    Georgia Thermou United Kingdom University of Nottingham
    Mark Verbaten Netherlands ABT bv
    Yu Zheng China -
    Tamás Nagy-György Romania Politehnica Univ. of Timisoara
    Ciro Del Vecchio Italy University of Naples Federico II
    Marta Del Zoppo Italy University of Naples Federico II
    Erkan Akpinar Turkey Kocaeli University
    Marta Baena Spain University of Girona
    Bryan Barragan France OCV Chambery International
    Jian-Fei Chen Taiwan, Province of China Southern University of Science and Technology
    Mihaela Anca Ciupala United Kingdom University of East London
    Halldor Gunnar Dadason Iceland Reykjavik University, Orbicon Artic
    Gianmarco de Felice Italy Roma Tre University
    Marco Di Ludovico Italy University of Naples
    David Escolano Margarit United Kingdom The University of Sheffield
    Sorin-Codrut Florut Romania Politehnica University of Timisoara
    Ivana Krajnović Belgium Ghent University
    Marianoela Leone Italy Universita del Salento
    Ali M. Mohaghegh Germany E. ON Climate & Renewables GmbH
    Azer Maazoun Belgium Ghent University
    Niek Pouwels Netherlands ABT
    Francesca Roscini Italy University of Sheffield
    Roman Sedlmair Germany Karlsruher Institut für Technology (KIT)
    Valeriu Stoian Romania -
    Souzana Tastani Greece Democritus University of Thrace
    Niki Trochoutsou United Kingdom University of Sheffield
    Muhammad Arslan Yaqub Belgium Ghent University
    Katarzyna Zdanowicz Germany Technische Universität Dresden
    Robert Garke Germany Halfen
    Nora Bies Germany TU Kaiserslautern
    Gian Piero Lignola Italy University of Naples Federico II
    Mohammadali Rezazadeh Portugal University of Minho
    Christoph Czaderski-Forchmann Switzerland EMPA, Structural Engineering

  • TG5.2 - Reinforcing steels and systems

    fib Task Group 5.2 (TG5.2) will consider all aspects related to reinforcing steels and systems from design to manufacturing, testing and final installation, use and maintenance. It will initially address several topics considered high priority. TG5.2 will create sub-groups to work on particular subjects.

    Areas of interest:

    • review of the reinforcing steel grades available on the market (strength, ductility, bond, fatigue, durability properties) and relevant concrete structure design codes;
    • manual for reinforcing materials and systems;
    • technical report on fabrication of reinforcement;
    • state of the knowledge on the bond properties of reinforcing steels;
    • state of the knowledge on the fatigue resistance properties of reinforcing steels.


    Paul GregoryConvener
    Paul Gregory
    Ladin CamciCo-Convener
    Ladin Camci

    First name Last name Country Affiliation
    Hans Rudolf Ganz Switzerland Ganz Consulting
    Ulf Nürnberger Germany University of Stuttgart
    Thore Hagberg Norway Dr.Ing. Thore Hagberg A.S.
    Steven McCabe United States Nat. Inst. of Standards & Technologies
    Manuel Elices Calafat Spain Universidad Politecnica de Madrid
    David Fernández-Ordóñez Switzerland fib
    Larry Krauser United States General Technologies, Inc.
    Jenny Burridge United Kingdom The Concrete Centre
    John Cairns United Kingdom Heriot-Watt University
    Josiane Piron Belgium SPW MI – Service public de Wallonie Mobilité et Infrastructures
    Ladin Camci United Kingdom CARES (Certification Authority for Reinforcing Steels)
    Rolf Eligehausen Germany IWB, Universität Stuttgart
    David Gustafson United States CRSI - Concrete Reinforcing Steel
    Sven Junge Germany ISB Institut für Stahlbetonbewehrung e.V.
    Dennis Keogh United Kingdom Laing O’Rourke Infrastructure Services
    Andrew Truby United Kingdom Truby Stevenson Ltd
    Vladyslav Shekhovtsov Ukraine Odesa State Academy of Civil Engineering and Architecture

  • TG5.3 - Prestressing materials and systems

    Since Eugène Freyssinet’s first of use high-strength steel wire for prestressing concrete in the late 1920s, there have been many changes in prestressing systems used around the world. Current systems bear little resemblance to many of the older methods used in the past. Designers and contractors need information regarding these historical practices and materials to evaluate existing prestressed concrete in need of repair and to determine effective strategies to extend service life and enhance performance. Further, as new technologies are developed, they are often used in some countries but not in others.

    Task Group 5.3 (TG5.3) has established two goals: 1) to develop a state-of-the-art report describing the evolution and development of prestressing systems and to identify recent innovations and advances, and 2) to develop a new bulletin that provides recommendations for the installation of post-tensioning systems.


    Tommaso CicconeConvener
    Tommaso Ciccone

    First name Last name Country Affiliation
    David Fernández-Ordóñez Switzerland fib
    Theodore Neff United States General Technologies, Inc.
    Tommaso Ciccone Italy TENSA (Tensacciai s.r.l.)
    Andrea Castiglioni di Caronno Italy TENSA (Tensacciai s.r.l.)
    Christian Gläser Germany DYWIDAG-Systems International
    Carol Hayek United States CCL
    Kiyotaka Hosoi Japan Shinko Wire Company Ltd
    Shinya Ikehata Japan Central Nippon Expressway Co Ltd
    Larry Krauser United States General Technologies, Inc.
    Lev Zaretsky Russian Federation Armasteel Llc
    Hirokazu Katsuda Japan Sumitomo (SEI) Steel Wire Corp
    Giuseppe Longo Italy Palermo Polytechnic School
    Josiane Piron Belgium SPW MI – Service public de Wallonie Mobilité et Infrastructures
    Nadarajah Surendran United Kingdom PRAETER Engineering Ltd
    Guillermo Ramirez Switzerland VSL International Ltd

  • TG5.4 - Recommendations for ground anchor systems

    The overall motivation of Task Group 5.4 (TG5.4) is to establish a modern recommendation for the qualification of ground anchor systems.

    The main objective of TG5.4 is to prepare a bulletin entitled “Recommendation for ground anchor systems” based on and updating earlier documents such as the “Recommendations for the design and construction of ground anchors”, 1996. The recommendations will include significant content for qualification of ground anchor systems covering prestressed permanent and temporary anchors.


    Hermann WeiherConvener
    Hermann Weiher

    First name Last name Country Affiliation
    Ulf Nürnberger Germany University of Stuttgart
    Javier Ripoll Garcia-Mansilla Spain Ripoll Consulting de Ing.
    Cyril Gaucherand France Freyssinet
    Gosta Ericson Sweden Sweco VBB AB
    Mark Sinclair Australia Structural Systems (Civil) Pty Ltd
    David Fernández-Ordóñez Switzerland fib
    Theodore Neff United States General Technologies, Inc.
    Chris Irvin United Kingdom DYWIDAG-SYSTEMS INTERNATIONAL Ltd.
    Matthias Ryser Germany Dr. Vollenweider AG
    Hermann Weiher Germany matrics engineering GmbH
    Philipp Egger Switzerland VSL International LTD
    Behzad Manshadi Switzerland BBR VT International Ltd
    Matthias Wild Germany Technical University of München
    Adrian Gnägi Switzerland VSL International Ltd.
    Toshiro Kido Japan Sumitomo (SEI) Steel Wire Corp.

  • TG5.5 - Cables for cable-supported bridges

    fib Bulletin 30, "Acceptance of stay cable systems using prestressing steels", was published in 2005. Since then, extradosed bridges, a bridge typology that is placed between cable-stayed bridges and ordinary girder bridges, became more and more popular. While extradosed bridges were already known at the time of publication of Bulletin 30, the knowledge was not enough to include this typology into the document.

    Additionally, after more than seven years, there is a general request from system suppliers, designers and authorities to update the current document so new stay cable system/solutions, applications, acquired knowledge, installation methods, etc. are discussed and included in a new document version.

    The goal of Task Group 5.5 (TG5.5) is to update the current recommendation document so extradosed bridges are fully included (e.g. loading over SLS design, loading over ULS design, design & detailing, construction, initial type testing, etc.).


    Werner BrandConvener
    Werner Brand

    First name Last name Country Affiliation
    Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
    Kiyotaka Hosoi Japan Shinko Wire Company Ltd
    Christos Georgakis Denmark Aarhus University
    Adrian Tejera Spain Tycsa PSC Spain
    David Goodyear United States T.Y. Lin International
    Tommaso Ciccone Italy TENSA (Tensacciai s.r.l.)
    Werner Brand Germany DYWIDAG-Systems International
    Antonio Caballero Switzerland BBR VT international Ltd.
    Kathy Meiss Germany Stuttgart University of Applied Sciences
    David Fernández-Ordóñez Switzerland fib
    Theodore Neff United States General Technologies, Inc.
    Jan Winkler Denmark Atkins
    Hiroshi Mutsuyoshi Japan Saitama University , Fac. of Eng.
    Alex Gutsch Germany MPA Braunschweig
    Shinya Ikehata Japan Central Nippon Expressway Co Ltd
    Manuel Escamilla García-Galán Spain PONTEM
    Robert Widmann Switzerland EMPA
    Gregory Hasbrouk United States Parsons
    Andrea Castiglioni di Caronno Italy TENSA (Tensacciai s.r.l.)
    Philipp Egger Switzerland VSL International LTD
    Haifeng Fan Switzerland BBR Vt International Ltd.
    Ivica Zivanovic France Freyssinet
    Behzad Manshadi Switzerland BBR VT International Ltd
    Hirokazu Katsuda Japan Sumitomo (SEI) Steel Wire Corp
    Sherif Mohareb Germany KLÄHNE BUNG Ingenieure

  • TG5.6 - Behaviour under cryogenic conditions

    The growing worldwide use of liquefied natural gas (LNG) has seen the development of significant LNG storage tank facilities for LNG exporters and importers. These massive storage tanks are essential for receiving and safe storage of the liquid gas. Despite this, the last FIP publication on prestressed concrete under cryogenic conditions dates back to 1988 (draft state-of-the-art report – Cryogenic behavior of materials for prestressed concrete).

    The main goal of fib Task Group 5.6 (TG5.6) is the development of a new fib recommendation document in which key aspects in concrete prestressed LNG tanks such as design recommendations, execution, system and material testing, control/monitoring, etc., are covered.


    Antonio CaballeroConvener
    Antonio Caballero
    Alex W. GutschConvener
    Alex W. Gutsch

    First name Last name Country Affiliation
    Josée Bastien Canada University Laval
    Matthias Wild Germany Technical University of München
    Adrian Tejera Spain Tycsa PSC Spain
    Ivica Zivanovic France Freyssinet
    Josef Rötzer Germany DYWIDAG
    Adrian Gnägi Switzerland VSL International Ltd.
    Antonio Caballero Switzerland BBR VT international Ltd.
    Markus Traute Germany DYWIDAG-Systems International
    Christian Gläser Germany DYWIDAG-Systems International
    Manuel Elices Calafat Spain Universidad Politecnica de Madrid
    Takeyoshi Nishizaki Japan Osaka Gas Company
    Matus Benovic Slovakia Industrial Steel Wires EMEA
    David Fernández-Ordóñez Switzerland fib
    Larry Krauser United States General Technologies, Inc.
    Yasuhiro Sakai Japan Obayashi Corporation
    Alex Gutsch Germany MPA Braunschweig
    Toshiro Kido Japan Sumitomo (SEI) Steel Wire Corp.
    Lucie Vandewalle Belgium KULeuven

  • TG5.8 - External tendons for bridges

    As a result of durability issues with bonded internal tendons, external tendons in bridge construction have become more popular in several countries. External tendons are now widely used throughout the world. While many of the technological aspects of external tendons look similar to internal bonded tendons, there are significant differences between the two, e.g. in terms of corrosion protection, tendon deviation blocks, tendon curvature and lay out, tendon replaceability, tendon force transfer to the structure, and ultimate strength. These differences merit the amendment of existing specifications, or the preparation of new specifications for external tendon design, testing, installation, duct durability, corrosion protection, maintenance and eventual replacement.

    The goal of Task Group 5.8 (TG5.8) is to prepare a technical report on the applications of external tendons in bridges from different countries and focusing on system related topics with minor implementation of design aspects of the structure using external tendons.


    Christian GläserConvener
    Christian Gläser
    Teddy S. TheryoConvener
    Teddy S. Theryo

    First name Last name Country Affiliation
    Josée Bastien Canada University Laval
    Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
    Teddy Theryo United States Florida Department of Transportation
    José Turmo Coderque Spain Universitat Politecnica de Catalunya
    Pierre Boitel France Freyssinet
    Cor Kuilboer Netherlands Private
    Peter Matt Switzerland Private
    Guillermo Ramirez Switzerland VSL International Ltd
    Christian Gläser Germany DYWIDAG-Systems International
    Dong Xu China Tongji University
    Jan Piekarski Poland BBR Polska Sp. z o. o.
    Hans Rudolf Ganz Switzerland Ganz Consulting
    David Fernández-Ordóñez Switzerland fib
    Larry Krauser United States General Technologies, Inc.
    Hermann Weiher Germany matrics engineering GmbH
    Toshiro Kido Japan Sumitomo (SEI) Steel Wire Corp.

  • TG5.10 - Inspection and monitoring of reinforced/prestressed concrete structures

    Maintenance of aging infrastructure (buildings, bridges, tunnels, etc.) is a significant part of both public, and private-entities’ budgets. The worldwide infrastructure and property maintenance costs are estimated to be EUR 180 billion per year. These costs depend on industry sector, age of the assets and governmental regulations. They highly affect the financial situation of public bodies and the profitability of enterprises.

    There is a need to develop a guideline document to cover state-of-the-art inspection method statements, available sensor technologies including emerging digital solutions and remote sensing (e.g. drone inspection).

    The required time for the development of this guideline is estimated between two to three years. The rough and high-level schedule is suggested as follows:

    • First 6 to 9 months focused on building up the team and finalize the definition of the scope and content. Both are interlinked;
    • Next 12 to 18 months working on developing the content of the different chapters;
    • Final 6 to 9 months to finalize the first draft, including editorial review, before its submission to the TG 5.10 and C5;
    • Finally, some time is expected to engage the peer reviewers and answer questions/comments received from the TG 5.10 and C5.

    Antonio CaballeroConvener
    Antonio Caballero
    Jan WinklerConvener
    Jan Winkler

    First name Last name Country Affiliation
    Antonio Caballero Switzerland BBR VT international Ltd.
    Jan Winkler Denmark Atkins
    David Fernández-Ordóñez Switzerland fib

  • TG5.11 - Polymer-duct systems for internal bonded post-tensioning

    Re-activate the earlier Task Group for polymer duct systems.

    It should be the objective to limit changes to a minimum only where needed. It is also suggested to limit the number of drafting members to a relatively small group to facilitate web-meetings, and subsequently circulate draft changes to a wider group. Since fib Bulletin 75 is referenced in approval procedures in Europe and Florida DOT, it is imperative to have representatives of approval bodies and FDOT actively involved into the review.


    TBDConvener
    TBD

    First name Last name Country Affiliation
    David Fernández-Ordóñez Switzerland fib

 

fib postal address

Case postale 88
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

 Follow us on
        

Join the fib

Join the fib