• COM1: Concrete structures

    COM1: Concrete structures

  • COM1: Concrete structures

    COM1: Concrete structures

Motivation

Commission 1 (COM1) seeks to encourage and develop good practices in the design of concrete structures, with a special emphasis on innovation and imagination. Its work should complement national, regional (e.g. Eurocodes), as well as international codes (e.g. the fib Model Code for Concrete Structures 2010), which in principle give only design specifications.

Scope and objective of technical work

COM1 examines all aspects of specific types of structures, from their structural and architectural design to construction and service life.

COM1 aims to provide state-of-the-art documentation and recommendations for all types of structures where structural concrete plays a significant role. This will apply in priority to fields of development where data and guidelines are not yet available, either new types of structures or implementation of new developments of materials, or a combination of both. COM1 endeavours to promote practices leading to sound, economical, durable and aesthetic design, with special attention to sustainable development principles. 

 

Michel MoussardCommission Chair
Michel Moussard 
Aad Van der HorstDeputy Chair
Aad van der Horst

  • TG1.1 - Bridges

    Task Group 1.1 (TG1.1) is dedicated to bridge engineering. All types of bridges are concerned, with a predominance of concrete bridges. Theoretical and practical aspects are treated, as well as construction techniques. Innovations and recent developments but also established good practices are highlighted. Emphasis is placed on bridge architecture and design.

    The general objective of the task group is to provide design guides, recommendations, practical design rules and technical advice on bridge design and related construction techniques. Rules of good practice and recommendations for the correct use of materials and techniques are formulated.


    Jean-François KleinConvener
    Jean-François Klein

    • WP1.1.1 - Bridges for high-speed trains
       
      Working Party 1.1.1 (WP 1.1.1) aims to provide guidance for designers of bridges for high speed trains, covering issues such as loads, dynamics, rail deck interaction, wind, slipstream forces, accidental situations, maintenance and inspection, etc. The document will be based on existing guidance edited by the German railway administration. International expertise will broaden the recommendations and bring them to an international level.

      Steffen MarxConvener
      Steffen Marx

      First name Last name Country Affiliation
      - - - -
      Miguel Angel Astiz Suarez Spain Carlos Fernandez Casado S. L.
      Thomas Fackler Germany Schlaich Bergermann und Partner GmbH
      Nobuyuki Matsumoto Japan -
      Günter Seidl Germany SSF Ingenieure AG
      Patrice Schmitt France SNCF
      Steffen Marx Germany Leibniz Universität Hannover
      David Fernández-Ordóñez Switzerland fib

    • WP1.1.3 - Integral bridges
       
      The scope of WP 1.1.3 is to prepare practical guidelines on semi-integral and integral bridges. The objective of these guidelines is to define the current best practical response to specific problems associated with semi-integral and integral bridges from an international perspective. It will be based on existing guidelines, results from scientific research and feedback from practical experience.

      f26a5b1890dc0eaf1ac664c5Convener
      TBD

      First name Last name Country Affiliation
      - - - -
      Aurelio Muttoni Switzerland EPF Lausanne
      Murat Dicleli Turkey Ankara Middle East Technical University
      Philipp Wenger Germany Schlaich Bergmann and Partners
      Sergio Breña United States University of Massachusetts Amherst
      Marc Wenner Germany Marx Krontal GmbH
      Manuel Alvarez Switzerland Swiss Federal Roads Office
      Florentijn de Beulaker Belgium BAM
      Philippe Jardin France CEREMA
      Rémi Havy France ARCADIS
      Akimitsu Kurita Japan Osaka Institute of Technology
      Peter Collin Sweden Luleå University of Technology
      Damien Champenoy France CEREMA
      João Almeida Portugal Instituto Superior Técnico Lisboa
      Michel Moussard France -
      Anssi Laaksonen Finland A-Insinöörit
      Steffen Marx Germany Leibniz Universität Hannover
      Alejandro Pérez Caldentey Spain Polytechnic University of Madrid
      Alessandro Palermo New Zealand The University of Canterbury
      Walter Kaufmann Switzerland ETH Zürich
      Susumu Inoue Japan Osaka Institute of Technology
      David Fernández-Ordóñez Switzerland fib

    • WP1.1.4 - Light railway bridges
       
      While road and railway bridges benefit from standards and extensive documentation often published by state agencies, it is not the case for lightweight railway bridges. This can be explained by the variety of systems ranging from LRT (Light Rail Transit) to MRT (Mass Rapid Transit) and the fact that these systems are mainly operating at a city or regional level.

      However, from a bridge engineering perspective, common features, particular requirements and good practices for design and construction that specifically apply to these transportation modes can be identified.

      The general objective of this working party is to provide a state-of-the-art report for the design of LRT and MRT bridges.

      f26a5b1890dc0eaf1ac664c5Convener
      Matthieu Pochat

      First name Last name Country Affiliation
      - - - -
      Matthieu Pochat France Systra
      David Fernández-Ordóñez Switzerland fib

    • WP1.1.5 - Management of of prestressed concrete bridges
       
      Over recent years some significant work has gone into inspection and investigation of post-tensioned bridges around the world. This has led to an increase in understanding the methods of inspection to determine the condition of the prestressing tendons and the whole process to assess structural safety. Some bridges of this type have been repaired and others have been replaced. Long term management of such bridges is becoming important to bridge owners around the world and guidance is scarce.

      The working party can collect the current state-of-the-art of such processes from the fib’s member countries and prepare a state-of-the-art report with guidance to assist the countries that are still to embark on inspecting their stock of such bridges.

      James CollinsConvener
      James Collins

      First name Last name Country Affiliation
      - - - -
      Chris Hendy United Kingdom Atkins
      Bruno Godart France -
      Gaute Nordbotten Norway Norwegian Public Roads Administration
      James Collins United Kingdom Ramboll
      Manuel Pipa Portugal LNEC Lisbon
      Tohru Makita Japan Central Nippon Expressway Company Ltd
      Teddy Theryo United States Florida Department of Transportation
      Jae-Yeol Cho South Korea, Republic of Seoul National University
      Peter Paulik Slovakia Slovak University of Technology in Bratislava
      David Fernández-Ordóñez Switzerland fib

    First name Last name Country Affiliation
    - - - -
    Florent Imberty France Razel SA
    Guido Morgenthal Germany Bauhaus University
    Akio Kasuga Japan Sumitomo Mitsui Construction Co.Ltd.
    Peter Curran United Kingdom Ramboll UK
    Miguel Angel Astiz Suarez Spain Carlos Fernandez Casado S. L.
    Steffen Marx Germany Leibniz Universität Hannover
    Mike Schlaich Germany TU Berlin
    David Fernández-Ordóñez Switzerland fib

  • TG1.2 - Concrete structures in marine environments

    Well-designed, well-built concrete structures are particularly suited for the marine environment. Task Group 1.2 has so far focused on structures for oil and gas fields in hostile marine environments (fib Bulletin 50); now the focus will be on concrete structures in marine environments in general.

    There are additional markets as well, even in urban areas, where societal activities could be effectively located on or in marine concrete structures. For example, artificial islands could be constructed for dwellings, offices, parking lots or other similar needs. Airports have also been considered. Urban infrastructure also has other potential applications, such as submerged floating tunnels, floating bridges and immersed tunnels.

    In coastal areas, docks, fish farming, renewable energy and storage may be suitable applications. Ships and barges should also be considered.

    Tor Ole OlsenConvener
    Tor Ole Olsen

    • WP1.2.1 - Floating concrete structures
       
      In many cases, floating structures have some clear advantages compared to fixed structures. The motivation of the work in this WP is to demonstrate these advantages, and attempt to draw conclusions as to what applications are particularly promising.
       
      The objective of WP1.2.1 is to demonstrate the usefulness of concrete in a modern society where floating structures may be needed. It will identify and consider potential applications of marine floating concrete structures, and then make selections and go into more detail on how the selected applications can be made competitive.

      f26a5b1890dc0eaf1ac664c5Convener
      Tor Ole Olsen

      First name Last name Country Affiliation
      - - - -
      Tor Ole Olsen Norway Dr. techn. Olav Olsen a.s.
      Christophe Rozier France Bouygues Travaux Publics
      Michel Hamon France -
      Francisco Esteban Lefler Spain -
      Scott Haynes Hong Kong -
      Harald Rogne Norway -
      Paul Notenboom Netherlands Arcadis
      Coen Van der Vliet Netherlands Arcadis
      Ove Tobias Gudmestad Norway -
      Arnstein Godejord United States -
      Dag Jenssen Norway -
      Hilde Benedikte Østlund Norway -
      Mike Paschalis Belgium -
      Wenche Rettedal Norway -
      Tom Wike Norway -
      James Engwall United Kingdom Price & Myers
      Rolf Larssen Norway Aas Jacobsen
      Michel Vache France -
      Kåre Hjorteset United States BergerABAM
      Milos Zich Czech Republic -
      Gordon Jackson United Kingdom Arup Energy
      Kjetil Thorsen Norway -
      Steinar Helland Norway S Helland Konsult
      João Almeida Portugal Instituto Superior Técnico Lisboa
      Adrian Gnägi Switzerland VSL International Ltd.
      Terje Kanstad Norway The Norwegian Univ.of Science & Tech
      Fernando Rebouças Stucchi Brazil EGT Engenharia
      Hugo Corres Peiretti Spain FHECOR Ingenieros Consultores
      Milan Kalny Czech Republic Pontex s.r.o. Prague
      Aurelio Muttoni Switzerland EPF Lausanne
      David Fernández-Ordóñez Switzerland fib

    • WP1.2.2 - Submerged floating tunnels (SFT)
       
      Sometimes our infrastructures need to cross water. Immersed tunnels that sit on the seabed are widely used; more than 100 have been built.
       
      Submerged floating tunnels have never been built, at least not for car use. Similar to bridges, submerged floating tunnels span the water. Submerged floating tunnels may be supported between landfalls, either by tension legs or pontoons.
       
      The main scope of this working party is to concisely describe the most important merits of these sea tunnels, give relevant references to important literature, describe important design premises, and provide guidance on potential improvements.

      f26a5b1890dc0eaf1ac664c5Convener
      Tor Ole Olsen

      First name Last name Country Affiliation
      - - - -
      Milan Kalny Czech Republic Pontex s.r.o. Prague
      Aurelio Muttoni Switzerland EPF Lausanne
      Tor Ole Olsen Norway Dr. techn. Olav Olsen a.s.
      Michel Hamon France -
      Francisco Esteban Lefler Spain -
      Scott Haynes Hong Kong -
      Harald Rogne Norway -
      Paul Notenboom Netherlands Arcadis
      Coen Van der Vliet Netherlands Arcadis
      Ivar Eng Norway Multiconsult
      Bjørn Isaksen Norway Norwegian Road Administration
      Arianna Minoretti Norway Norwegian Road Administration
      Michel Vache France -
      Kåre Hjorteset United States BergerABAM
      Milos Zich Czech Republic -
      Gordon Jackson United Kingdom Arup Energy
      Kjetil Thorsen Norway -
      Luis Peset Gonzales Spain -
      Mette Geiker Norway NTNU - Trondheim Norwegian Univ.
      Ronald Heijmans Netherlands Arcadis
      Lars Holte United States Berger-ABAM
      Hugo Corres Peiretti Spain FHECOR Ingenieros Consultores
      David Fernández-Ordóñez Switzerland fib

    First name Last name Country Affiliation
    - - - -
    Tor Ole Olsen Norway Dr. techn. Olav Olsen a.s.
    Christophe Rozier France Bouygues Travaux Publics
    Michel Hamon France -
    Francisco Esteban Lefler Spain -
    Scott Haynes Hong Kong -
    Harald Rogne Norway -
    Paul Notenboom Netherlands Arcadis
    Coen Van der Vliet Netherlands Arcadis
    Ivar Eng Norway Multiconsult
    Bjørn Isaksen Norway Norwegian Road Administration
    Arianna Minoretti Norway Norwegian Road Administration
    Adrian Gnägi Switzerland VSL International Ltd.
    David Fernández-Ordóñez Switzerland fib

  • TG1.3 - Buildings

    The use of concrete in Building Structures is widespread throughout the world and is generally well documented in the various national codes and standards. There are however a number of areas where guidance to designers is unclear or where significant interpretation is required. The aim of this task group is to review the current design and construction approaches used and to identify where additional guidance is required. Where it is felt necessary, the group will undertake the appropriate literature searches, review the available current guidance and produce new design advice and recommendations in the form of fib bulletins.

    The main goals of TG1.3 main goals are to:

    • identify how recent improvements in concrete knowledge and technology are, or could be, applied to building structures;
    • prepare state-of-the-art reports, guidelines and recommendations on the use of concrete in the design and construction of concrete buildings.

    Andrew TrubyConvener
    Andrew Truby

    • WP1.3.1 - Structural design of concrete transfer structures
       
      Transfer structures are often used in building structures as a means of varying load paths through the structure to suit changes in the building grid. Transfer structures typically attract loadings from large areas of a structure and are therefore required to accommodate very large forces. The design of such structures is often outside the scope of normal code guidance and may require a degree of interpretation and engineering judgement. Transfer structures will normally be classified as “Key Elements” and therefore considerations of robustness and progressive collapse are key to their design.
       
      The construction of transfer structures often requires careful consideration in terms of their temporary support, concrete delivery and curing and the staged application of the applied forces.
       
      The main goals of WP1.3.1 will be to:
      • To provide a reference document which will describe the types and features of concrete transfer structures and provide information and guidance on their design and construction.
      • The scope will include loading from gravity loads only and thus will exclude laterally loaded transfer structures such as “outrigger beam/trusses”.
      • Guidance will be provided in the following areas:-
        • Types of Transfer Structure
        • Design Considerations
        • Construction Considerations
        • Pre-setting (pre- cambering formwork etc)
       

      Andrew TrubyConvener
      Andrew Truby

      First name Last name Country Affiliation
      - - - -
      David Fernández-Ordóñez Switzerland fib

    • WP1.3.2 - Planning movement joints in concrete buildings
       
      For larger concrete buildings, movement joints are necessary to control the effects of drying shrinkage, temperature and creep. The positioning of movement joints is dependent on building shape, positioning of cores and shear walls and can be influenced by construction sequence and pour layout. The presence of joints is a fundamental factor in planning the stability system of buildings.
       
      There is a trend in hospitals and other buildings requiring hygienic conditions towards wider spacing of movement joints.
       
      Design codes typically provide recommendations on calculating the magnitude of movement but not on the spacing of movement joints. Readily available guidance on spacing of joints in enclosed buildings is prescriptive and does not reflect current practice.
       
      The main goals of WP1.3.2 will be to:
      • To create a reference document that will provide guidance on planning for movement and positioning of movement joints in concrete buildings, with particular emphasis onenclosed rather than open buildings.
      • Guidance will be provided in the following areas:-
        • Causes of movement – early thermal, temperature, drying shrinkage
        • Design considerations
        • Managing movements through the construction process
        • Project examples and typical plan layouts

      Andrew TrubyConvener
      Andrew Truby

      First name Last name Country Affiliation
      - - - -
      David Fernández-Ordóñez Switzerland fib

    First name Last name Country Affiliation
    - - - -
    George Keliris United Kingdom Buro Happold Ltd.
    Steve Mckechnie United Kingdom -
    Jean Marc Jaeger France SETEC TPI
    Andrew Fraser United Kingdom Ramboll UK
    Pierre Leflour COM_COMMUNITY_LANG_NAME_ setec tpi
    Richard Reynolds COM_COMMUNITY_LANG_NAME_ Buro Happold
    Paulo Silva Lobo Portugal University of Madeira-Funchal
    Jenny Burridge United Kingdom -
    Neil Pitt COM_COMMUNITY_LANG_NAME_ Explore Manufacturing
    Stefano Cammelli United Kingdom -
    Phil Mansell United Arab Emirates Ramboll UK
    Colin Banks United Kingdom Laing O’Rourke
    Andrew Truby United Kingdom Truby Stevenson Ltd
    Nadarajah Surendran United Kingdom PRAETER Engineering Ltd
    Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP
    Mario Alberto Chiorino Italy Politecnico di Torino
    Taehun Ha Korea, Republic Of Daewoo Engineering & Construction
    Fabrizio Palmisano Italy PPV Consulting
    John Cairns United Kingdom Heriot-Watt University
    Kaare Dahl Denmark Rambøll
    David Fernández-Ordóñez Switzerland fib

  • TG1.4 - Tunnels

    Transportation, mining, water management, energy network development, combined with environmental concerns, have led to a significant increase in the construction of tunnels around the world. Along with other materials, structural concrete plays a primary role in the realisation of these structures, and many issues related to the use of concrete in tunnels ought to be accordingly addressed in order to promote the best use of structural concrete in this field of civil engineering.

    The main goals of TG1.4 main goals are to:

    • identify how recent improvements in concrete knowledge and technology are, or could be, applied to tunnels, and how new developments in tunnel construction can rely upon concrete technologies;
    • prepare state-of-the-art reports, guidelines, recommendations on the use of concrete in tunnel design and construction.

    Alberto MedaConvener
    Alberto Meda

    First name Last name Country Affiliation
    - - - -
    Frank Dehn Germany MFPA Leipzig GmbH
    Remco Lensen Netherlands Mobilis TBI
    Catherine Larive France Tunnels Study Centre
    Giuseppe Tiberti Italy University of Brescia
    Konrad Bergmeister Austria Univ. Bodenkultur Vienna
    Carola Edvardsen Denmark Cowi AS
    Alberto Meda Italy University of Rome “Tor Vergata”
    Hiroshi Dobashi Japan Metropolitan Expressway Company Ltd
    Michel Moussard France -
    David Fernández-Ordóñez Switzerland fib

    • WP1.4.1 - Tunnels in fibre-reinforced concrete
       
      The fib Model Code for Concrete Structures 2010 (fib MC2010) introduced indications for fibre-reinforced concrete, which has led to increased use of fibre-reinforced concrete, particularly in the construction of tunnels. The use of fibre-reinforced in tunnels is one of the main applications of this material both in natural excavated tunnels (mainly in sprayed concrete) and in mechanical excavated tunnels (precast elements).
       
      The main scope of this working party is to support the designer in the use of the fib MC2010 for tunnel design. Indications on how to deal with aspects that are not explicitly covered by the fib MC2010 will be given.

      Alberto MedaConvener
      Alberto Meda

      First name Last name Country Affiliation
      - - - -
      Frank Dehn Germany MFPA Leipzig GmbH
      Catherine Larive France Tunnels Study Centre
      Giuseppe Tiberti Italy University of Brescia
      Silvino Pompeu Santos Portugal -
      Gordon Jackson United Kingdom Arup Energy
      Konrad Bergmeister Austria Univ. Bodenkultur Vienna
      Carola Edvardsen Denmark Cowi AS
      Alberto Meda Italy University of Rome “Tor Vergata”
      Michel Moussard France -
      Albert de la Fuente Antequera Spain Universidad Polytecnica de Catalunya
      Hiroshi Dobashi Japan Metropolitan Expressway Company Ltd
      David Fernández-Ordóñez Switzerland fib

    • WP1.4.2 - Design and construction of openings in precast lining
       
      The realisation of openings in precast lining of tunnels to enlarge the space (creating recesses, etc.) or to build connections with other underground spaces or tunnels requires local disassembly of precast lining segments and cast concrete walls in situ. These areas of the tunnels are subject to specific load conditions, so that the structural requirements should be carefully considered in the design.
       
      The construction of the openings also requires special attention, particularly when there is water pressure around the tunnel, in order to prevent water entrance and allow work to be carried out safely. The realisation of the new walls and connections with existing lining segments also needs specific procedures, according to the technology used.

      f26a5b1890dc0eaf1ac664c5Convener
      TBD

      First name Last name Country Affiliation
      - - - -
      Silvino Pompeu Santos Portugal -
      David Fernández-Ordóñez Switzerland fib

  • TG1.5 - Structural sustainability

    Recently, sustainability has been discussed with regard to materials, recycling and so on, relating to the reduction of CO2 emissions. However, sustainability has another aspect, for example, the structure, design and construction, which can lead to reducing energy consumption and non-renewable resources over the course of the full life-time of a structure. Minimising energy consumption and non-renewable resources, will be discussed in the context of environmental, social and economic aspects in order to provide sustainable solutions for our society. These discussions will be key for developing sustainable structures. This philosophy is defined as “Structural Sustainability”.

    The aim of this Task Group is to focus on minimising energy consumption and non-renewable resources during the life-time of structures from the structural point of view. Basically, the structures built using current specifications are durable. Therefore, structural sustainability should be defined as the difference from existing technologies to new ones in order to make structural sustainability clear. Examples of structural type, detailing, design, special construction techniques and so on for structural sustainability will be collected to publish a state-of-the-art report.


    Akio KasugaConvener
    Akio Kasuga

    First name Last name Country Affiliation
    - - - -
    Gordon Clark United Kingdom Consultant
    Milan Kalny Czech Republic Pontex s.r.o. Prague
    Akio Kasuga Japan Sumitomo Mitsui Construction Co.Ltd.
    Serge Montens France -
    José Arizón Spain Aguacanal
    Kenichi Kata Japan Sumitomo Mitsui Consctruction Co, Ltd.
    João Almeida Portugal Instituto Superior Técnico Lisboa
    Ekkehard Fehling Germany IBB Fehling + Jungmann
    Petr Hajek Czech Republic Czech Technical University in Prague
    Michel Moussard France -
    Koji Sakai Japan Japan Sustainability Institute
    Philippe Vion France VINCI Construction Grands-Projets
    Hugo Corres Peiretti Spain FHECOR Ingenieros Consultores
    Alessandro Palermo New Zealand The University of Canterbury
    David Fernández-Ordóñez Switzerland fib

  • TG1.6 - History of concrete structures

    During the long history of CEB, FIP and now fib, the main objectives of their commissions, task groups and special activity groups were and are actual topics of research, application and dissemination.

    Construction history is a rapidly growing research field in the community of architects and civil engineers. The last conference on construction history took place in Paris in July 2012 and consisted of 66 sessions. Only two of them focused on concrete and concrete construction. Furthermore, none of the key lectures was related to concrete.

    The task group intends to set up a process which shall result in the publication of a series of bulletins covering the global history of structural concrete, from its first developments to the present situation.

    At the beginning, it is very important to organise the extremely broad field of historic research. It is suggested to start with a narrower approach, mainly with the collection of historic material. A broader approach implies the integration of concrete history within the time, including political, social, climatic, economic and ecological circumstances. This will require more time as well as the addition of historically educated experts.


    Manfred CurbachConvener
    Manfred Curbach

    First name Last name Country Affiliation
    - - - -
    Luc Taerwe Belgium Ghent University
    Gordon Clark United Kingdom Consultant
    David Fernández-Ordóñez Switzerland fib
    Edwin Trout United Kingdom -
    François Cussigh France -
    Per Jahren Norway -
    Patricia Garibaldi Germany Technische Univ. Dresden
    Rita Greco Italy Technical University of Bari - DICATECH
    Jean Michel Torrenti France IFSTTAR
    Manfred Curbach Germany Technische Univ. Dresden
    Michel Moussard France -
    Paul Acker France Lafarge LCR

  • TG1.7 - Construction of concrete structures

    The areas of interest have been developed from the viewpoint that the construction process has two main components: perception related aspects and process aspects. The perception related aspects comprise materials, workmanship, formwork and scaffolding, curing of concrete, concrete surface, testing and monitoring, high performance concrete, special technologies, specifications and training/education. The process related aspects comprise the construction process of concrete structures, quality management and life cycle management.

    The task group addresses state-of-the-art basic principles of the construction process of concrete structures at site. Furthermore, the task group reflects on anticipated developments, which could have a significant influence on construction. The objective is to develop awareness regarding aspects which have an impact on safety, serviceability, durability and environmental issues of concrete structures to be built on site, and to provide information as how to handle the basic principles. The output will be presented as internationally harmonised reports.


    Aad van der HorstConvener
    Aad van der Horst

    First name Last name Country Affiliation
    - - - -
    Florent Imberty France Razel SA
    Manuel Contreras Spain ARUP
    Fabrice Cayron France Bouygues Travaux Publics
    Didier Primault France Vinci Construction
    José Turmo Coderque Spain Universitat Politecnica de Catalunya
    Günter Rombach Germany Techn. Univ. of Hamburg-Harburg
    Daniel Tassin United States International Bridge Technologies, Inc.
    Manuel Buron Maestro Spain IECA
    Patrice Schmitt France SNCF
    Giuseppe Mancini Italy Politecnico Torino
    Aad Van Der Horst Netherlands Delft Univ. of Technology
    V. N. Heggade India Gammon India Ltd
    Oliver Fischer Germany Technical University Munich
    Ch. Portenseigne France Bouygues Travaux Publics
    David Fernández-Ordóñez Switzerland fib
    Gopal Srinivasan United Kingdom Arup

  • TG1.8 - Concrete industrial floors

    Concrete is often used for industrial floors that are designed to withstand static and dynamic loads as well as the degradation caused by operations and the environment.

    Industrial floor must be properly designed for resisting point and distributed loads due to shelves and vehicles present on the floor. Seismic action transmitted by shelves must be considered in seismic areas.

    Shrinkage phenomena play a major role since they provoke early age cracks that can be controlled by contraction joints that are likely to damage due to wheel crossing.

    Another important issue is represented by the top finishing layer that had to be properly designed to resist abrasion.

    Main scope of the Task Group is to briefly describe the most important issues in concrete technology for industrial floors, give relevant references to important literature, describe important design premises, give guidance to potential improvements and maintenance. Some attention will be also devoted to refurbishing of existing floors.


    Giovanni A. PlizzariConvener
    Giovanni A. Plizzari

    First name Last name Country Affiliation
    - - - -
    Klaus Holschemacher Germany -
    Amir Bonakdar United States Euclid Chemical – ACI
    Gianluigi Pirovano Italy -
    Valérie Pollet Belgium BBRI-Rilem
    Pedro Serna Ros Spain Univ. Politecnica de Valencia-Icitech
    Bryan Barragan France OCV Chambery International
    Johan Silfwerbrand Sweden KTH Royal Institute of Technology
    Alberto Meda Italy University of Rome “Tor Vergata”
    Giovanni Plizzari Italy University of Brescia
    David Fernández-Ordóñez Switzerland fib

 

First name Last name Country Affiliation
Josée Bastien Canada University Laval
João Almeida Portugal Instituto Superior Técnico Lisboa
Akio Kasuga Japan Sumitomo Mitsui Construction Co.Ltd.
Gordon Clark United Kingdom Consultant
Giovanni Plizzari Italy University of Brescia
Aad Van Der Horst Netherlands Delft Univ. of Technology
Andrew Truby United Kingdom Truby Stevenson Ltd
Jiri Strásky Czech Republic -
Tor Ole Olsen Norway Dr. techn. Olav Olsen a.s.
Michel Virlogeux France Virlogeux Consulting
Alberto Meda Italy University of Rome “Tor Vergata”
Jim Forbes Australia Arcadis
Manfred Curbach Germany Technische Univ. Dresden
David Fernández-Ordóñez Switzerland fib
- - - -
Michel Moussard France -
Shoji Ikeda Japan Hybrid Research Inst. Inc.

fib postal address

Case postale 88
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

 Follow us on
        

Join the fib

Join the fib