• COM1: Concrete structures

    COM1: Concrete structures

  • COM1: Concrete structures

    COM1: Concrete structures

Motivation

Commission 1 (COM1) seeks to encourage and develop good practices in the design of concrete structures, with a special emphasis on innovation and imagination. Its work should complement national, regional (e.g. Eurocodes), as well as international codes (e.g. the fib Model Code for Concrete Structures 2010), which in principle give only design specifications.

Scope and objective of technical work

COM1 examines all aspects of specific types of structures, from their structural and architectural design to construction and service life.

COM1 aims to provide state-of-the-art documentation and recommendations for all types of structures where structural concrete plays a significant role. This will apply in priority to fields of development where data and guidelines are not yet available, either new types of structures or implementation of new developments of materials, or a combination of both. COM1 endeavours to promote practices leading to sound, economical, durable and aesthetic design, with special attention to sustainable development principles. 

 

1706 ComConv AlbertoMeda BWCommission Chair
Alberto Meda
Arianna MinorettiDeputy Chair
Arianna Minoretti
TBCCo Deputy Chair
Aad van der Horst

  • TG1.1 - Bridges

    Task Group 1.1 (TG1.1) is dedicated to bridge engineering. All types of bridges are concerned, with a predominance of concrete bridges. Theoretical and practical aspects are treated, as well as construction techniques. Innovations and recent developments but also established good practices are highlighted. Emphasis is placed on bridge architecture and design.

    The general objective of the task group is to provide design guides, recommendations, practical design rules and technical advice on bridge design and related construction techniques. Rules of good practice and recommendations for the correct use of materials and techniques are formulated.


    Thierry DelémontConvener
    Thierry Delémont

    • WP1.1.1 - Bridges for high-speed trains
       
      Working Party 1.1.1 (WP 1.1.1) aims to provide guidance for designers of bridges for high speed trains, covering issues such as loads, dynamics, rail deck interaction, wind, slipstream forces, accidental situations, maintenance and inspection, etc. The document will be based on existing guidance edited by the German railway administration. International expertise will broaden the recommendations and bring them to an international level.

      Steffen MarxConvener
      Steffen Marx

    • WP1.1.3 - Integral bridges
       
      The scope of WP 1.1.3 is to prepare practical guidelines on semi-integral and integral bridges. The objective of these guidelines is to define the current best practical response to specific problems associated with semi-integral and integral bridges from an international perspective. It will be based on existing guidelines, results from scientific research and feedback from practical experience.

      f26a5b1890dc0eaf1ac664c5Convener
      Alessandro Parlermo
      f26a5b1890dc0eaf1ac664c5Co-Convener
      Jessica Sanderberg

    • WP1.1.4 - Light railway bridges
       
      While road and railway bridges benefit from standards and extensive documentation often published by state agencies, it is not the case for lightweight railway bridges. This can be explained by the variety of systems ranging from LRT (Light Rail Transit) to MRT (Mass Rapid Transit) and the fact that these systems are mainly operating at a city or regional level.

      However, from a bridge engineering perspective, common features, particular requirements and good practices for design and construction that specifically apply to these transportation modes can be identified.

      The general objective of this working party is to provide a state-of-the-art report for the design of LRT and MRT bridges.

      f26a5b1890dc0eaf1ac664c5Convener
      TBD

    • WP1.1.6 - Design Loads for long span bridges
       
      The design of long span bridges goes beyond the application range of all the codes of practice and usual construction recommendations. While it is possible to use and extrapolate codes for the design of single elements, it is not the same for the initial definition of data, and especially to fix the loading scheme of the bridge which are not covered by codes.

      The goal of the group is to establish a clear philosophy and some basic rules to fix the loading schemes of the bridge in relation to its span length and its typology.

      Thierry DélémontConvener
      Thierry Délémont

    • WP1.1.7 - Performance Evaluation and Service Life Extension of Existing Bridges
       
      There are a large number of existing reinforced concrete (RC) bridges in mainland Europe, UK, and the US that are either close to their useful service lives or their useful service lives have already passed. Furthermore, these bridges increasingly subjected to variety of short and long-term environmental threats. Short-term threats include extreme events such as floods, storms and in some parts of the world earthquakes, tsunamis etc. Long-term threats are related to infrastructure material ageing and climate change. The global population is projected to reach 9.5b and by 2050, leading to significantly increased need for efficient use and maintenance of existing and construction of new transport infrastructure. Bridges are critical nodes in any transport infrastructure network, and they compromise the functionality of the network if they malfunction or are disabled.

      In order to safely and accurately assess the structural performance of existing bridges and extend their service life, particular attention must be paid to structural detailing, loading (service loads, abnormal loads, and extreme events), and ongoing deterioration, and repair/strengthening options. This will be done in collaboration with other commissions to avoid any overlap between the different commissions.

      The primary objectives of the working party (WP) includes, but is not limited to:
      • Assessment of Structural Vulnerability
      • Corrosion Impact on Remaining Service Life of Bridge
      • Low-Carbon Repair and Strengthening Methods
      • Integration with Sustainable Design and Assessment Practices
      • Seismic Performance Consideration
      • Collaboration and Knowledge Sharing

      Mohammad Mehdi KashaniConvener
      Mohammad Mehdi Kashani
      Zila RinaldiCo-Convener
      Zila Rinaldi

  • TG1.2 - Concrete structures in marine environments

    Well-designed, well-built concrete structures are particularly suited for the marine environment. Task Group 1.2 has so far focused on structures for oil and gas fields in hostile marine environments (fib Bulletin 50) and on concrete structures in marine environments in general (fib Bulletin 91). A special focus has been done on floating tube bridges to help the designers to consider this promising alternative (fib Bulletin 96).

    Significant experience has been gained from the design and construction of offshore concrete structures of the world and concrete has shown the possibility to design durable structures also in aggressive marine environment.

    The topic of durability is, nowadays, more and more important, especially considering the goals on sustainability that the community is required to reach. Durable, safe and sustainable floating concrete structures will provide an important alternative in a future with lack of space on land and new technological solutions, for example for renewable energy production, that are continuously approaching the market.

    Arianna MinorettiConvener
    Arianna Minoretti

    • WP1.2.1 - Floating concrete structures
       
      In many cases, floating structures have some clear advantages compared to fixed structures. The motivation of the work in this WP is to demonstrate these advantages, and attempt to draw conclusions as to what applications are particularly promising.
       
      The objective of WP1.2.1 is to demonstrate the usefulness of concrete in a modern society where floating structures may be needed. It will identify and consider potential applications of marine floating concrete structures, and then make selections and go into more detail on how the selected applications can be made competitive.

      Tor Ole OlsenConvener
      Tor Ole Olsen

    • WP1.2.2 - Submerged floating tube bridges (SFTB)
       
      Sometimes our infrastructures need to cross water. Immersed tunnels that sit on the seabed are widely used; more than 100 have been built.
       
      Submerged floating tube bridges (SFTB) have never been built. Submerged floating tube bridges are floating bridges, submerged at a defined depth below the water surface. They may be supported between landfalls, either by tension legs or pontoons. They have a closed cross section, like the one of an ordinary tunnel, but they behave like a bridge.
       
      The main scope of this working party is to provide the community with the information needed regarding the SFTB technology.

      Arianna MinorettiConvener
      Arianna Minoretti

    • WP1.2.3 - Environmental benefits of marine concrete structures
       
      The WP would work on the topics of influence of the marine concrete structures on the biological environment, climate challenges (CO2) for marine structures and resilience of marine structures respect to climate changes. An additional topic could be how marine concrete structures can help reducing the negative environmental aspects of nowadays activities, like congestions, polluting factories, renewable energies, food production and so on.

      Arianna MinorettiConvener
      Arianna Minoretti

    • WP1.2.4 - Submerged/floating bridges in seismic areas
       
      The WP would work on floating structures as solutions for seismic areas.

      Luca MartinelliConvener
      Luca Martinelli

    • WP1.2.5 - Inspections monitoring and maintenance for constructions
       
      The WP will focus on how to best solve issues on inspections and continuous monitoring to answer to the maintenance problems, toward a more durable life for marine structures.

      Marco NovelloConvener
      Marco Novello

    • WP1.2.6 - Innovative solutions for submerged and floating structures in marine environment
       
      The challenges posed by an evolving society and the growing attention towards sustainability and optimal exploitation of natural resources require the entire Civil Engineering community to rethink the conceptual paradigms underlying the design of structures and infrastructures serving the community, including environmental structures and, more specifically, structures in contact with rivers and seas, which also serve as a driver to the Blue Economy sector.

      The activities of WP 1.2.6 are placed in this line of renewal, aimed at the study of submerged and floating structures in marine environment: these structures pose a series of challenges, ranging from the choice (or even conception) of the building material, in light of the adverse and even aggressive environmental conditions, up to the accurate evaluation of the state of stress, from the perspective of the most modern probabilistic approaches to the problem.

      Patrick BamonteConvener
      Patrick Bamonte

      First name Last name Country Affiliation
      David Fernández-Ordóñez Switzerland fib
      Tor Ole Olsen Norway Olav Olsen a.s.
      Cheng Shanshan United Kingdom University of Plymouth
      Liberato Ferrara Italy Politecnico di Milano
      Patrick Bamonte Italy Politecnico di Milano
      Gordon Jackson United Kingdom Arup Energy

  • TG1.3 - Buildings

    The use of concrete in Building Structures is widespread throughout the world and is generally well documented in the various national codes and standards. There are however a number of areas where guidance to designers is unclear or where significant interpretation is required. The aim of this task group is to review the current design and construction approaches used and to identify where additional guidance is required. Where it is felt necessary, the group will undertake the appropriate literature searches, review the available current guidance and produce new design advice and recommendations in the form of fib bulletins.

    The main goals of TG1.3 main goals are to:

    • identify how recent improvements in concrete knowledge and technology are, or could be, applied to building structures;
    • prepare state-of-the-art reports, guidelines and recommendations on the use of concrete in the design and construction of concrete buildings.

    Andrew TrubyConvener
    Andrew Truby

    • WP1.3.2 - Planning Movement Joints in Concrete Buildings
       
      For larger concrete buildings, movement joints are necessary to control the effects of drying shrinkage, temperature and creep. The positioning of movement joints is dependent on building shape, positioning of cores and shear walls and can be influenced by construction sequence and pour layout. The presence of joints is a fundamental factor in planning the stability system of buildings.
       
      There is a trend in hospitals and other buildings requiring hygienic conditions towards wider spacing of movement joints.
       
      The main goals of WP1.3.2 will be to create a reference document that will provide guidance on planning for movement and positioning of movement joints in concrete buildings, with particular emphasis on enclosed rather than open buildings.

      Jeremy WellsConvener
      Jeremy Wells

      First name Last name Country Affiliation
      Jeremy Wells United Kingdom WSP
      Jenny Burridge United Kingdom The Concrete Centre
      Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP
      Nadarajah Surendran United Kingdom PRAETER Engineering Ltd
      Richard Reynolds United Kingdom Buro Happold
      Andrew Truby United Kingdom Truby Stevenson Ltd
      Andrew Fraser United Kingdom Ramboll UK
      Christian Tygoer United Kingdom AKT II
      Phil Mansell United Kingdom Robert Bird
      Colin Banks United Kingdom Laing O’Rourke
      Keith Jones United Kingdom Ramboll
      Dave Cotton United Kingdom Atkins

  • TG1.4 - Tunnels

    Transports, mining, water management, energy network development, combined with environmental concern, are leading to a large increase of tunneling works around the World. As structural concrete plays a primary role, among other materials, for the realization of those works, it appears that many issues related to the use of concrete in tunnels ought to be addressed, in order to allow and promote the best use of structural concrete in this field of civil engineering.

    The main goals of TG1.4 main goals are to:

    • identify how recent improvements in concrete knowledge and technology are, or could be, applied to tunnels, and how new developments in tunnel construction can rely upon concrete technologies;
    • prepare state-of-the-art reports, guidelines, recommendations for the use of concrete in tunnels design and construction.

    Alberto MedaConvener
    Alberto Meda

  • TG1.5 - Structural sustainability

    Recently, sustainability has been discussed with regard to materials, recycling and so on, relating to the reduction of CO2 emissions. However, sustainability has another aspect, for example, the structure, design and construction, which can lead to reducing energy consumption and non-renewable resources over the course of the full life-time of a structure. Minimising energy consumption and non-renewable resources, will be discussed in the context of environmental, social and economic aspects in order to provide sustainable solutions for our society. These discussions will be key for developing sustainable structures. This philosophy is defined as “Structural Sustainability”.

    The aim of this Task Group is to focus on minimising energy consumption and non-renewable resources during the life-time of structures from the structural point of view. Basically, the structures built using current specifications are durable. Therefore, structural sustainability should be defined as the difference from existing technologies to new ones in order to make structural sustainability clear. Examples of structural type, detailing, design, special construction techniques and so on for structural sustainability will be collected to publish a state-of-the-art report.


    Akio KasugaConvener
    Akio Kasuga

  • TG1.6 - History of concrete structures

    During the long history of CEB, FIP and now fib, the main objectives of their commissions, task groups and special activity groups were and are actual topics of research, application and dissemination.

    Construction history is a rapidly growing research field in the community of architects and civil engineers. The last conference on construction history took place in Paris in July 2012 and consisted of 66 sessions. Only two of them focused on concrete and concrete construction. Furthermore, none of the key lectures was related to concrete.

    The task group intends to set up a process which shall result in the publication of a series of bulletins covering the global history of structural concrete, from its first developments to the present situation.

    At the beginning, it is very important to organise the extremely broad field of historic research. It is suggested to start with a narrower approach, mainly with the collection of historic material. A broader approach implies the integration of concrete history within the time, including political, social, climatic, economic and ecological circumstances. This will require more time as well as the addition of historically educated experts.


    Manfred CurbachConvener
    Manfred Curbach
    Michel MoussardCo-Convener
    Michel Moussard

  • TG1.7 - Construction of concrete structures

    The areas of interest have been developed from the viewpoint that the construction process has two main components: perception related aspects and process aspects. The perception related aspects comprise materials, workmanship, formwork and scaffolding, curing of concrete, concrete surface, testing and monitoring, high performance concrete, special technologies, specifications and training/education. The process related aspects comprise the construction process of concrete structures, quality management and life cycle management.

    The task group addresses state-of-the-art basic principles of the construction process of concrete structures at site. Furthermore, the task group reflects on anticipated developments, which could have a significant influence on construction. The objective is to develop awareness regarding aspects which have an impact on safety, serviceability, durability and environmental issues of concrete structures to be built on site, and to provide information as how to handle the basic principles. The output will be presented as internationally harmonised reports.


    Aad van der HorstConvener
    Aad van der Horst

  • TG1.8 - Concrete industrial floors

    Concrete is often used for industrial floors that are designed to withstand static and dynamic loads as well as the degradation caused by operations and the environment.

    Industrial floor must be properly designed for resisting point and distributed loads due to shelves and vehicles present on the floor. Seismic action transmitted by shelves must be considered in seismic areas.

    Shrinkage phenomena play a major role since they provoke early age cracks that can be controlled by contraction joints that are likely to damage due to wheel crossing.

    Another important issue is represented by the top finishing layer that had to be properly designed to resist abrasion.

    Main scope of the Task Group is to briefly describe the most important issues in concrete technology for industrial floors, give relevant references to important literature, describe important design premises, give guidance to potential improvements and maintenance. Some attention will be also devoted to refurbishing of existing floors.


    Giovanni A. PlizzariConvener
    Giovanni A. Plizzari

 

fib postal address

Ch. du Barrage, Station 18
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

News

Follow us on
           

Join the fib

Join the fib