• Latest news

    Latest news

  • Latest news

    Latest news

COM2: Analysis & design

Motivation

Analysis and design are understood as core tasks of structural engineering. In this field, nine areas of interest have been identified; hence, nine task groups form the basis of the new structure of Commission 2. Today, the analysis – i.e. the detailed investigation of the stress and strain state – has gained in importance, and consequently refined and physically based models and calculation procedures are required. On the other hand, the design of new structures (comprising conception, dimensioning and detailing) still is fundamental for practicing engineers. In general, the respective approaches should be one and the same for the two levels of detail, but more practical and easier to apply for the latter case. Commission 2 supports and follows this line of development of structural engineering.

Scope and objective of technical work

The scope of Commission 2 is to develop models and calculation procedures for the analysis and design of structures and structural members under short term and long term static loading as well as under fatigue, fire and extreme events. Serviceability limit states and ultimate limit states as well as their interaction are considered, and both research results and recommendations for the practical application shall be presented. In the near future the activity of COM2 will focus on new and also on existing structures in order to support the development of the new fib Model Code 2020.

 

Oguzhan BayrakCommission Chair
Oguzhan Bayrak
TBCDeputy Chair
TBC

First name Last name Country Affiliation
György L. Balázs Hungary Budapest Univ. of Techn. & Economics
Giuseppe Mancini Italy Politecnico Torino
Maria Rosaria Pecce Italy University of Naples Federico II
Joost Walraven Netherlands Dutch fib Delegation
Mikael Braestrup Denmark Rambøll
Oguzhan Bayrak United States Univ. of Texas at Austin
Manfred Curbach Germany Technische Univ. Dresden
Giovanni Plizzari Italy University of Brescia
Jan Vítek Czech Republic Metrostav a. s.
Walter Kaufmann Switzerland ETH Zürich
John Cairns United Kingdom Heriot-Watt University
David Fernández-Ordóñez Switzerland fib
Rolf Eligehausen Germany IWB, Universität Stuttgart
Viktor Sigrist Switzerland vis Engineering
Mikael Hallgren Sweden Tyréns Sverige AB
Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
Niels Høj Switzerland HOJ Consulting GmbH
Stephen Foster Australia UNSW Australia
Johann Kollegger Austria Vienna University of Technology
Koichi Maekawa Japan Yokohama National University
Robert Vollum United Kingdom Imperial College London

  • TG2.1 - Serviceability models

    Serviceability limit states (SLS) determine the applicability of concrete structures. When these criteria are met, the concrete structure can function properly during its service life. Correct design according to serviceability limit states is therefore essential for the construction of durable, robust and valuable structures. Violation of the SLS criteria leads to structures that do not function properly and/or to reduced durability, the consequences of which can be recognised very quickly. Therefore, the models for verification of the expected criteria are of primary importance.

    The activity of the group is focused on the development of models for analysis of cracks and deformations of concrete structures. Beside the sophisticated numerical models, engineering practice requires practical engineering approaches, which are applicable in codes and in preliminary design stages when important decisions on the conceptual design are accepted. The activity will be focused on new structures and also on existing structures for assessment, rehabilitation or strengthening.


    Alejandro Pérez CaldenteyConvener
    Alejandro Pérez Caldentey

    First name Last name Country Affiliation
    Francesca Ceroni Italy Universitá degli Studi di Napoli Parthenope
    Diane Gardner United Kingdom Cardiff University
    Laurie Lacarrière France INSA Toulouse
    H. Gintaris Kaklauskas Lithuania Vilnius Gediminas Technical Univ.
    Michel Lorrain France INSA
    Clare Burns Switzerland Walt+Galmarini AG
    Philippe Bisch France Egis Industries
    Damir Tkalčič Croatia Civil Engineering Institute of Croatia
    Pier Debernardi Italy Politecnico di Torino
    Lars Eckfeldt Germany Deutsches Institut für Bautechnik (DIBt)
    Matteo Guiglia Italy Politecnico di Torino
    Dorian Borosnyoi-Crawley New Zealand WSP Research
    Jean-Philippe Sellin France Cerema
    Robert Lark United Kingdom Cardiff University
    Mamdouh El-Badry Canada University of Calgary
    Lukáš Vráblík Czech Republic Novak & Partner Ltd
    Maurizio Taliano Italy Politecnico di Torino
    Viktor Gribniak Lithuania Vilnius Gediminas Technical University
    Amin Ghali Canada University of Calgary
    Andor Windisch Germany -
    Josko Ozbolt Germany Universität Stuttgart
    François Toutlemonde France Université Gustave Eiffel
    Maria Rosaria Pecce Italy University of Naples Federico II
    Jean Michel Torrenti France Univ Gustave Eiffel
    Ekkehard Fehling Germany IBB Fehling + Jungmann GmbH
    Vladimir Cervenka Czech Republic Cervenka Consulting
    Mario Alberto Chiorino Italy Politecnico di Torino
    Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
    Jan Vítek Czech Republic Metrostav a. s.
    David Fernández-Ordóñez Switzerland fib
    Olivier Burdet Switzerland EPFL-ENAC-IBETON
    Lluis Torres Spain University of Girona
    Roman Wan-Wendner Belgium Ghent University
    Frédéric Duprat France INSA Toulouse
    Antonio Mari Bernat Spain Uni. Politéc. Catalunya
    Cristina Barris Spain Universitat de Girona
    Alena Kohoutkova Czech Republic Czech Technical University - CVUT
    Philippe Menétrey Switzerland IngPhi sa
    Eva Oller Ibars Spain Technical University of Catalonia
    Tamon Ueda China Shenzhen University
    György L. Balázs Hungary Budapest Univ. of Techn. & Economics
    Nikola Tošić Spain Universitat Politècnica de Catalunya
    Christina McLeod South Africa University of Kwazulu - Natal
    Arvydas Rimkus Vilnius Lithuania Gediminas Technical University
    Dirk Schlicke Austria Technische Universität Graz
    Jean-Jacques Brioist France SIAM, AFGC
    Syed Yasir Alam France Ecole Central de Nantes
    Reignard Tan Norway NTNU Trondheim
    Viet Tue Nguyen Austria TU Graz
    Robert Vollum United Kingdom Imperial College London
    ab van den bos Netherlands NLyse
    Helder Filipe Moreira de Sousa Portugal Brisa Group

    • WP2.1.1 - Long-term behaviour of prestressed concrete bridges
       
      Some concrete bridges suffer from deflections that are larger than expected. The objective of WP2.1.1 is to explain possible reasons of this phenomenon, to identify factors and finally to propose recommendations for the design of new bridges or as well as the rehabilitation of existing bridges.

      Jan VitekConvener
      Jan Vitek

      First name Last name Country Affiliation
      György L. Balázs Hungary Budapest Univ. of Techn. & Economics
      Jean-Philippe Sellin France Cerema
      Mario Alberto Chiorino Italy Politecnico di Torino
      Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
      Jan Vítek Czech Republic Metrostav a. s.
      David Fernández-Ordóñez Switzerland fib
      Olivier Burdet Switzerland EPFL-ENAC-IBETON
      Roman Wan-Wendner Belgium Ghent University
      Antonio Mari Bernat Spain Uni. Politéc. Catalunya
      Frédéric Duprat France INSA Toulouse
      Mamdouh El-Badry Canada University of Calgary
      Robert Lark United Kingdom Cardiff University
      Philippe Menétrey Switzerland IngPhi sa
      Lukáš Vráblík Czech Republic Novak & Partner Ltd
      Cristina Barris Spain Universitat de Girona
      Christina McLeod South Africa University of Kwazulu - Natal
      Eva Oller Ibars Spain Technical University of Catalonia
      Dirk Schlicke Austria Technische Universität Graz

    • WP2.1.2 - Restrained and imposed deformations
       
      The main objective of Working Party 2.1.2 is to present practical recommendations for the design of reinforced and post-tensioned concrete structures to accommodate the effects of restrained and imposed deformations. This involves looking into the causes of internally-induced and externallyimposed deformations and point out their different influences on the structural behaviour. The WP will assess various effects that may affect the degree of restraint such as superimposed loading and presence of prestressing, and propose modifications to existing design criteria where relevant.
       
      Guidance will be given on the use of nonlinear response analysis for rigorous response prediction.

      Perez CaldenteyConvener
      Perez Caldentey

      First name Last name Country Affiliation
      György L. Balázs Hungary Budapest Univ. of Techn. & Economics
      Carlos Bajo Pavia Spain Ferrovial Agromán S. A.
      José Câmara Portugal Inst. Superior Tecnico
      Jean Michel Torrenti France Univ Gustave Eiffel
      Jan Vítek Czech Republic Metrostav a. s.
      Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
      David Fernández-Ordóñez Switzerland fib
      Lluis Torres Spain University of Girona
      Lukáš Vráblík Czech Republic Novak & Partner Ltd
      Viktor Gribniak Lithuania Vilnius Gediminas Technical University
      Laurie Lacarrière France INSA Toulouse
      Antonio Mari Bernat Spain Uni. Politéc. Catalunya
      Maurizio Taliano Italy Politecnico di Torino
      Hugo Corres Spain FHECOR Ingenieros Consultores
      Dirk Schlicke Austria Technische Universität Graz

  • TG2.2 - Ultimate limit state models

    Task Group 2.2 was established to evaluate and develop models for the conception, design and analysis of concrete structures. Topics within the scope of the work may include models that deal with the ultimate limit state and with ductility as to their affect on peak and post peak behaviours.

    The objective of TG2.2 is to synthesise available results from research, testing and design experience. Therefore, research and development in this field is monitored, documented and evaluated. For the time being, the work is focused on the behaviour of slabs and beams in shear, shear aspects in the design of members reinforced with steel bars, steel fibres or a combination of steel fibres and bars and the punching behaviour of slabs. Moreover, strut-and-tie modelling is treated as a specific method to capture ultimate limit states.


    Aurelio MuttoniConvener
    Aurelio Muttoni

    First name Last name Country Affiliation
    Steve Denton United Kingdom WSP
    Joost Walraven Netherlands Dutch fib Delegation
    Oguzhan Bayrak United States Univ. of Texas at Austin
    Josef Hegger Germany RWTH Aachen
    Fausto Minelli Italy University of Brescia
    Robert Vollum United Kingdom Imperial College London
    Miguel Fernández Ruiz Spain Universidad Politécnica de Madrid
    David Fernández-Ordóñez Switzerland fib
    Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
    Miguel Lourenço Portugal JSJ Consulting
    Stephen Foster Australia UNSW Australia
    Marco di Prisco Italy Politecnico di Milano
    Evan Bentz Canada University of Toronto

    • WP2.2.1 - Shear in beams
       
      WP2.2.1 will prepare a bulletin about shear design and analysis models for beams (physical basis and experimental validation). Several aspects are considered to be treated in the report, including the influence of the member size or of point loads near supports, clear definitions of failure modes, strut-and-tie modelling or nonlinear calculation procedures.
       

      f26a5b1890dc0eaf1ac664c5Convener
      Oguzhan Bayrak

      First name Last name Country Affiliation
      Joost Walraven Netherlands Dutch fib Delegation
      Oguzhan Bayrak United States Univ. of Texas at Austin
      Beatrice Belletti Italy Univ. degli Studi di Parma - Engineering and Architecture
      Josef Hegger Germany RWTH Aachen
      Robert Vollum United Kingdom Imperial College London
      Miguel Fernández Ruiz Spain Universidad Politécnica de Madrid
      Walter Kaufmann Switzerland ETH Zürich
      David Fernández-Ordóñez Switzerland fib
      Viktor Sigrist Switzerland vis Engineering
      Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
      Antoni Cladera Bohigas Spain University of Balearic Islands
      Patrick Huber Austria Vienna University of Technology
      Trevor Hrynyk United States University of Waterloo
      Stephen Foster Australia UNSW Australia
      Sung-Gul Hong Korea, Republic of Seoul National University
      Boyan Mihaylov Belgium University of Liege
      Juan Sagaseta United Kingdom University of Surrey
      Almila Uzel Turkey Yeditepe University
      Evan Bentz Canada University of Toronto

    • WP2.2.2 - Shear in members with steel fibres
       
      WP2.2.2 will invite further experts to participate.

      f26a5b1890dc0eaf1ac664c5Convener
      Marco di Prisco

      First name Last name Country Affiliation
      Fausto Minelli Italy University of Brescia
      David Fernández-Ordóñez Switzerland fib
      Stephen Foster Australia UNSW Australia
      Marco di Prisco Italy Politecnico di Milano

    • WP2.2.3 - Punching and shear in slabs
       
      WP2.2.3 will invite further experts to participate.

      f26a5b1890dc0eaf1ac664c5Convener
      Aurelio Muttoni

      First name Last name Country Affiliation
      Maurizio Orlando Italy Università degli Studi di Firenze
      Günter Rombach Germany Techn. Univ. of Hamburg-Harburg
      António Ramos Portugal NOVA School of Science &Technology
      Jaroslav Halvonik Slovakia Slovak University of Technology in Bratislava
      Mary Beth Hueste United States Texas A&M University
      Dominik Kueres Germany RWTH Aachen University
      Rupert Walkner Austria University of Innsbruck
      Gustavo Parra-Montesinos United States University of Michigan
      Guilherme Melo Brazil Universidade de Brasilia
      Joost Walraven Netherlands Dutch fib Delegation
      Oguzhan Bayrak United States Univ. of Texas at Austin
      Josef Hegger Germany RWTH Aachen
      Robert Vollum United Kingdom Imperial College London
      Miguel Fernández Ruiz Spain Universidad Politécnica de Madrid
      Anssi Laaksonen Finland Tampere University of Technology
      Carlos Ospina United States Simpson, Gumpertz & Heger Inc.
      Markus Vill Austria Vill ZT GmbH
      David Fernández-Ordóñez Switzerland fib
      Mikael Hallgren Sweden Tyréns Sverige AB
      Jürgen Feix Austria University of Innsbruck
      Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
      Linh Hoang Denmark Danmarks Tekniske Universitet
      Juan Sagaseta United Kingdom University of Surrey
      Hong-Gun Park Korea, Republic of Seoul National University
      Maria Polak Canada University of Waterloo
      Yuguang Yang Netherlands TU Delft

    • WP2.2.4 - Strut and tie modelling
       
      WP2.2.4 will address topics such as ordinary and more refined models, the level of approximation concept, an update of the MC2010 provisions, reversal loading and 3D models.

      Lourenço, Miguel Filipe Passos SérioConvener
      Lourenço, Miguel Filipe Passos Sério

      First name Last name Country Affiliation
      João Almeida Portugal Instituto Superior Técnico Lisboa
      Miguel Fernández Ruiz Spain Universidad Politécnica de Madrid
      Stathis Bousias Greece Department of Civ il Engineering
      David Fernández-Ordóñez Switzerland fib
      Jaime Mata-Falcón Spain Universitat Politècnica de València
      Miguel Lourenço Portugal JSJ Consulting
      Boyan Mihaylov Belgium University of Liege
      Linh Hoang Denmark Danmarks Tekniske Universitet
      Carlos Meléndez Spain Esteyco SA
      Duarte Faria Switzerland Muttoni et Fernández, ingénieurs conseils SA
      Miguel Pedrosa Ferreira Portugal -
      Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)

  • TG2.3 - Fire design of concrete structures

    Task Group 2.3 welcomes active members with expertise in theory and practice in relation to fire design of concrete structures. The scope of TG2.3 comprises a discussion of theoretical and practical problems in relation to fire design and the development of the state-of-the-art and best practices for fire design of concrete structures. It is the goal that the results of the task group will not only serve as a reference for the experts within the topic of fire design, but also will be helpful for the members of the fib in general.

    The scope of the work of TG2.3 is based on the previous achievements, which include Bulletins 38 and 46 on fire design of concrete structures: materials, modelling, structural behaviour and assessment, as well as contributions to the fib Model Code and various workshops and special sessions on these topics.

    In the next phase, TG2.3 will concentrate on a number of topical issues within fire design, with the objective of providing general engineering guidance within these fields. The work is organised in three working parties, with the following titles and scope.


    Ruben Van CoileConvener
    Ruben Van Coile

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Patrick Bamonte Italy Politecnico di Milano
    Roberto Felicetti Italy Politecnico di Milano
    Jean Marc Franssen Belgium Université de Liège
    João Rodrigues Portugal University of Coimbra - Polo II
    Pietro Gambarova Italy Politecnico di Milano
    Venkatesh Kodur United States Michigan State University
    Long Phan United States NIST
    David Fernández-Ordóñez Switzerland fib
    Ruben Van Coile Belgium Ghent University
    Luc Taerwe Belgium Ghent University
    Cristian Maluk United Kingdom -
    Hitesh Lakhani Germany University of Stuttgart
    Thomas Gernay United States Johns Hopkins University
    Negar Elhami Khorasani United States University at Buffalo
    M.Z. Naser United States Clemson University
    Frederik Hänsel Germany -
    Nataša Kalaba France Cerib
    Francesco Lo Monte Italy Politecnico di Milano
    Elena Michelini Italy University of Parma
    Riccardo Stucchi Switzerland Lombardi SA
    Ankit Agrawal United States Integral Research Solutions Group
    Tom Molkens Belgium KU Leuven
    Moritz Boxheimer Germany Karlsruhe Institute of Technology
    Peng Gao China Hefei University of Technology
    Katherine Cashell United Kingdom University College London
    Urska Blumauer Slovenia Slovenian Building Research Institute
    Wojciech Szymkuc Poland Poznan University of Technology

    • WP2.3.1 - Spalling design
       

      The aim of WP2.3.1 is to prepare a technical report providing guidance on the structural fire engineering design for concrete structures with a high probability and/or sensitive to the occurrence of concrete spalling during or after a fire.


      Cristian MalukConvener
      Cristian Maluk

      First name Last name Country Affiliation
      Roberto Felicetti Italy Politecnico di Milano
      David Fernández-Ordóñez Switzerland fib
      João Rodrigues Portugal University of Coimbra - Polo II
      Hitesh Lakhani Germany University of Stuttgart
      Cristian Maluk United Kingdom -
      Long Phan United States NIST

    • WP2.3.2 - Performance-based fire design
       
      The aim of WP2.3.2 is to summarise, in a technical report, the international state-of-the-art and to discuss it specifically in relation to concrete structures, with the aim of achieving a proposal for its practical application.

      Thomas GernayConvener
      Thomas Gernay

      First name Last name Country Affiliation
      Jean Marc Franssen Belgium Université de Liège
      David Fernández-Ordóñez Switzerland fib
      Thomas Gernay United States Johns Hopkins University
      Patrick Bamonte Italy Politecnico di Milano
      Hitesh Lakhani Germany University of Stuttgart
      Cristian Maluk United Kingdom -
      Negar Elhami Khorasani United States University at Buffalo
      M.Z. Naser United States Clemson University
      João Rodrigues Portugal University of Coimbra - Polo II
      Ruben Van Coile Belgium Ghent University
      Marcus Achenbach Germany LGA KdöR
      Mohsen Roosefid France IRSN

    • WP2.3.3 - Fire resistance of concrete tunnels
       
      The aim of WP2.3.3 is to prepare a technical report concerning structural engineering aspects of fire in tunnels. The main topics to be discussed are the design of concrete tunnels exposed to fire, fire scenario for different tunnels, material for concrete tunnels and design supported by testing.
       

      Patrick BalmonteConvener
      Patrick Balmonte

      First name Last name Country Affiliation
      Patrick Bamonte Italy Politecnico di Milano
      Frederik Hänsel Germany -
      Nataša Kalaba France Cerib
      Francesco Lo Monte Italy Politecnico di Milano
      Elena Michelini Italy University of Parma
      Riccardo Stucchi Switzerland Lombardi SA
      David Fernández-Ordóñez Switzerland fib

    • WP2.3.4 - Post-fire assessment
       
      The aim of WP2.3.4 is to prepare a technical report the post fire assessment of concrete structures, summarizing the international state-of-the-art and providing actionable guidance on the evaluation of concrete structures following fire exposure.

      Ruben Van CoileConvener
      Ruben Van Coile

      First name Last name Country Affiliation
      Ruben Van Coile Belgium Ghent University
      Roberto Felicetti Italy Politecnico di Milano
      Thomas Gernay United States Johns Hopkins University
      Venkatesh Kodur United States Michigan State University
      Hitesh Lakhani Germany University of Stuttgart
      Tom Molkens Belgium KU Leuven
      João Rodrigues Portugal University of Coimbra - Polo II
      Ankit Agrawal United States Integral Research Solutions Group
      David Fernández-Ordóñez Switzerland fib
      Cristian Maluk United Kingdom -

  • TG2.4 - Computer-based modelling and design

    Task Group 2.4 (TG2.4) aims to bridge the gap between complex and advanced analyses and practical design applications. The current state of knowledge on nonlinear methods, thermomechanical analyses as well as the application of holistic 3D building models will be prepared for practical use.

    The scope and objectives of TG2.4 are to:

    • survey the current state of knowledge on computer-based modelling and design;
    • develop guidance documents related to the application of non-linear computer-based analysis methods for assessing performance and aiding the design of concrete members;
    • develop guidance documents related to the application of thermomechanical computer-based analysis methods for assessing the cracking risk respectively the mode of cracking and the required minimum reinforcement due to imposed and restrained deformations;
    • establish frameworks and methods to incorporate the application of holistic 3D building models in the static analysis and design in practice;
    • provide guidance on the application of computational modelling procedures to post-construction assessments, forensic engineering, and rehabilitation work relating to existing concrete structures.

    Moreover, the Task Group 2.4 shall become a platform for researchers and practical users to:

    • propose criteria for calibrating or validating computer-based procedures employed for concrete structure design or assessment;
    • discuss the extension of computer-based modelling procedures to structures employing high performance concretes, fibre-reinforced concretes, and composite concrete structures;
    • work toward integrating computer-based analysis-related provisions within the Model Code.

    Dirk SchlickeConvener
    Dirk Schlicke

    First name Last name Country Affiliation
    Laura Lowes United States University of Washington
    Stavroula (S.J.) Pantazopoulou Canada The Lassonde Faculty of Engineering, York University
    Enrico Spacone Italy Università G. D’Annunzio
    Oguzhan Bayrak United States Univ. of Texas at Austin
    Manfred Curbach Germany Technische Univ. Dresden
    Vladimir Cervenka Czech Republic Cervenka Consulting
    Walter Kaufmann Switzerland ETH Zürich
    David Fernández-Ordóñez Switzerland fib
    Stephen Foster Australia UNSW Australia
    Giorgio Monti Italy Sapienza Università di Roma
    Maria Polak Canada University of Waterloo
    Diego Lorenzo Allaix Netherlands TNO Neitherlands
    Mazen Ayoubi Germany Jordahl GmbH
    Beatrice Belletti Italy Univ. degli Studi di Parma - Engineering and Architecture
    Jaime Mata-Falcón Spain Universitat Politècnica de València
    Serhan Guner Canada Morrison Hershfield Ltd
    Max Hendriks Netherlands Delft University of Technology
    Frank Vecchio Canada University of Toronto
    Marius Weber Switzerland ETH Zurich
    Bjørn William Strand Norway Multiconsult AS
    Evan Bentz Canada University of Toronto
    Morten Engen Norway Multiconsult AS
    Tetsuya Ishida Japan Department of Civil Engineering
    Dirk Schlicke Austria Technische Universität Graz
    ab van den bos Netherlands NLyse

    • WP2.4.1 - Modelling of Fibre Reinforced Concrete Structures
       

      Discrete fibres are being added to cement based materials (Fibre reinforced concrete, FRC) in order to increase the post-cracking residual strength of concrete structures. The fibre reinforcement mechanisms are mainly activated after crack initiation of the binder paste, so modelling the behaviour of FRC requires numerical approaches able of simulating the crack initiation and crack propagation in cement based materials. However, the designers that have the responsibility to design FRC structures face several challenges for selecting the most appropriate constitutive model, such is the case when intended to use sophisticated computer programs based on the finite element method (FEM). The values of the parameters of the constitutive models, and how to assure that these values are representative of the behaviour of the real structure are key aspects that designers face.

      The main aim of this WG is to propose reliable methodologies for the application of FEM-based computer models for the design of FRC structures by considering their serviceability and ultimate limit state exigencies.


      Joaquim A. O. BarrosConvener
      Joaquim A. O. Barros

      First name Last name Country Affiliation
      Joaquim A. O. Barros Portugal Universidade do Minho
      David Fernández-Ordóñez Switzerland fib
      ab van den bos Netherlands NLyse
      Alberto Carpinteri Italy Politecnico di Torino
      Alessandro Fantilli Italy Politecnico di Torino
      Beatriz Sanz Spain Technical University of Madrid
      Erez GAL Israel Ben-Gurion University of the Negev
      Frank Vecchio Canada University of Toronto
      Jan Cervenka Czech Republic Cervenka Consulting Ltd
      Liberato Ferrara Italy Politecnico di Milano
      Pierre Rossi Brazil -
      Antonio Caggiano Germany Univ. of Buenos Aires/Univ. of Darmstadt
      Daniel Dias-da-Costa Portugal The Univ. of Sydney / Univ. of Coimbra
      David Cendon Spain Universidad Politécnica de Madrid
      Elisa Poveda Bautista Spain University of Castilla-La Mancha
      Erik Schlangen Netherlands Delft University of Technology
      Gerrit Neu Germany Ruhr University Bochum
      Gunther Meschke  Germany Ruhr University Bochum
      Jaime Planas  Spain Technical University of Madrid
      Peter Juhasz Hungary JKP Static - Budapest
      Massimiliano Cremonesi Italy Politecnico di Milano
      Nilüfer Özyurt Zihnioğlu Turkey Boğaziçi University
      Petr Kabele Czech Republic Czech Technical University in Prague
      Rena C. Yu Spain University of Castilla-La Mancha
      Stamatina Chasioti Canada Yorku University
      Ventura Gouveia Portugal Polytechnic Institute of Viseu
      Vitor Cunha  Portugal University of Minho
      Yin Chi China Wuhan University
      Luis Matos Portugal University of Minho
      Federico Accornero China -

    • WP2.4.2 - Life-span numerical simulation of concrete structures
       

      Accurate prediction of the durability and long-term performance of concrete structures is a challenging task due to numerous influencing factors involved and their complex combinations. Despite these complexities, the majority of current standard specifications deal with the durability of concrete on the basis of a rather simple, prescriptive approach, where a set of requirements are usually applied to at the design stage and serve mainly as the basis of quality control. The durability and long-term performance of concrete structures are also essential for evaluating sustainability aspects such as the life-cycle emissions of carbon dioxide (CO2). Therefore, we should be able to accurately predict the service life of a structure for given materials and processes. To improve our capability to predict the service life of concrete structures, we intend to use a multi-scale approach taking into account the time-dependent properties of concrete, externally applied loads and exposure environments in a holistic manner. To this end, such analysis models and simulation frameworks are still under development, and we aim to showcase its applicability, calculation procedures, required parameters, and appropriate ways of interpreting the simulation results.

      The main scope of WP 2.4.2 is developing accurate and reliable models and simulation frameworks for life-span numerical simulation of concrete structures. The primary objective of the activity is to couple material and structural behaviors with their durability and sustainability. The developed numerical models should cover mechanical behaviors, durability issues, and sustainability aspects such as CO2 emissions.


      Tetsuya IshidaConvener
      Tetsuya Ishida

      First name Last name Country Affiliation
      Tetsuya Ishida Japan Department of Civil Engineering
      David Fernández-Ordóñez Switzerland fib
      Motohiro Ohno Japan The University of Tokyo
      Farid Benboudjema France ENS Paris-Saclay, Université Paris-Saclay
      Shashank Bishnoi India Indian Institute of Technology Delhi
      Jie Dai China Henan University of Technology
      Fuyuan Gong China Zhejiang University
      B. Suryanto United Kingdom Heriot-Watt University Edinburgh
      Miguel Azenha Portugal Civil UMinho - Universidade do Minho
      Kefei Li China -
      Mehboob Rasul Japan Technology Development Division

  • TG2.5 - Bond and material models

    The overall motivation of TG2.5 is to advance theoretical and practical developments in topics related to bond and anchorage of reinforcing and prestressing materials, and to present these developments in an understandable and code-type formulated manner.

    TG2.5 undertakes activities which stimulate and advance modelling of the influence of bond and anchorage of reinforcement on structural performance, as well as the development of design provisions related to bond behaviour and detailing of laps and anchorages.


    Giovanni A. PlizzariConvener
    Giovanni A. Plizzari

    First name Last name Country Affiliation
    György L. Balázs Hungary Budapest Univ. of Techn. & Economics
    Francesca Ceroni Italy Universitá degli Studi di Napoli Parthenope
    Pietro Gambarova Italy Politecnico di Milano
    Stavroula (S.J.) Pantazopoulou Canada The Lassonde Faculty of Engineering, York University
    Maria Antonietta Aiello Italy University of Lecce
    Carlo Pellegrino Italy Università di Padova
    Flora Faleschini Italy University of Padova
    Roman Sedlmair Germany Karlsruher Institut für Technology (KIT)
    David Čitek Czech Republic CTU Klokner Institute
    Gabriella Bolzon Italy Politecnico di Milano
    Akanshu Sharma United States Purdue University
    Giovanni Metelli Italy University of Brescia
    Karin Lundgren Sweden Chalmers University of Technology
    Giovanni Plizzari Italy University of Brescia
    John Cairns United Kingdom Heriot-Watt University
    Charles Goodchild United Kingdom The Concrete Centre
    David Fernández-Ordóñez Switzerland fib
    Rolf Eligehausen Germany IWB, Universität Stuttgart
    Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
    Bruno Massicotte Canada Ecole Polytechnique de Montréal
    Dario Coronelli Italy Politecnico di Milano
    Marianoela Leone Italy Universita del Salento
    Remy Lequesne United States The University of Kansas
    Giovanni Muciaccia Italy Politecnico di Milano
    Giovacchino Genesio Germany Hilti Entwicklungsges. mbH
    Josipa Bosnjak Germany Universität Stuttgart
    Fabrizio Palmisano Italy PPV Consulting Studio Palmisano Perilli Associati,
    Juan Murcia-Delso Spain Universitat Politècnica de Catalunya (UPC)
    Marc Koschemann Germany Technische Universität Dresden

  • TG2.6 - Composite steel-concrete construction

    Steel-concrete composite construction allows various structural solutions that optimize the performances of the two-component materials through a well-assessed design that takes into account all the particularities of steel and RC constructions as well as interaction problems.

    The use of composite construction is widely spread all around the world, and its use for the construction of medium-sized bridges is a very frequent technical choice. In this historical period, the concrete industry must take this into account.

    The motivation of the fib TG2.6 is to identify the meaningful characteristics of composite steel- concrete structures with respect to typical aspects of RC structures in order to provide technical knowledge and design provisions.

    The activity of the group is focused on the analyses of the structural behaviour of RC parts constituting steel-concrete composite members and the modeling of their interaction with the steel parts.


    Maria Rosaria PecceConvener
    Maria Rosaria Pecce
    Antonio BilottaCo-Convener
    Antonio Bilotta

    First name Last name Country Affiliation
    Paolo Napoli Italy Politecnico di Torino
    Giovanni Fabbrocino Italy University of Molise
    Luigi di Sarno Italy Università degli studi del Sannio
    Luigino Dezi Italy Università Politecnica delle Marche
    Ciro Faella Italy University of Salerno
    Claudio Amadio Italy University of Trieste
    Iolanda del Prete United Kingdom BuroHappold Engineering
    Dennis Lam United Kingdom University of Bradford
    Graziano Leoni Italy University of Camerino
    Yong Wang United Kingdom University of Manchester
    Riccardo Zandonini Italy University of Trento
    Gabriele Bertagnoli Italy Politecnico di Torino
    Emidio Nigro Italy Università degli Studi di Napoli Federico II
    Ahmed Elghazouli United Kingdom Imperial College London
    Giuseppe Mancini Italy Politecnico Torino
    Maria Rosaria Pecce Italy University of Naples Federico II
    Antonio Bilotta Italy University of Naples Federico II
    Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
    Thanasis Triantafillou Greece University of Patras
    David Fernández-Ordóñez Switzerland fib
    Roman Wan-Wendner Belgium Ghent University
    Enzo Martinelli Italy University of Salerno
    Clémence Le Pourry France Ingenova
    Meini Su United Kingdom University of Manchester
    Hugo Corres Spain FHECOR Ingenieros Consultores
    Alejandro Giraldo Soto Switzerland -

  • TG2.7 - Seismic Design

    The motivation for the work of Task Group 2.7 (TG2.7) is the promotion of the use and improvement in safety of concrete structures under accidental (e.g. seismic) actions and/or in exposed regions worldwide.


    Paolo FranchinConvener
    Paolo Franchin

    First name Last name Country Affiliation
    Paolo Franchin Italy Sapienza Università di Roma
    Andreas Kappos United Arab Emirates Khalifa Univ.
    Michael Fardis Greece University of Patras
    David Fernández-Ordóñez Switzerland fib
    Gian Calvi Italy Universita degli Studi di Pavia
    Jesús-Miguel Bairán Spain Universitat Politècnica de Catalunya (UPC-BarcelonaTECH)
    Matjaz Dolsek Slovenia Faculty of Civil and Geodetic Engineering
    Iunio Iervolino Italy Università degli Studi di Napoli Federico II
    Tao Wang China Institute of Engineering Mechanics
    Philippe Bisch France Egis Industries
    Dionysis Biskinis Greece University of Patras
    Xilin Lu China Tongji University
    Telemachos Panagiotakos Greece Private
    Marko Marinković Serbia University of Belgrade
    Xavier Romão Portugal University of Porto
    Andrea Lucchini Italy Sapienza University of Rome
    Andrea Marchi Italy Sapienza University of Rome
    Qiuhong Zhao  China Tianjin University
    Alper Ilki Turkey ITU - Istanbul Technical University
    Shigeki Unjoh China Tohoku University
    Koichi Kusunoki Japan University of Tokyo
    Juan Murcia-Delso Spain Universitat Politècnica de Catalunya (UPC)
    Murat Altug Erberik Turkey Middle East Technical University
    Jeena Jayamon United States John A. Martin & Associates, Inc.
    André Furtado Portugal Instituto Superior Tecnico, Universidade de Lisboa
    Pathmanathan Rajeev Australia Swinburne University of Technology

  • TG2.8 - Safety and performance concepts

    The overall motivation of Task Group 2.8 (TG2.8) is based on the fact that structural systems are typically designed to stay in service for at least several decades. This implies that proper attention must be given to structural performance under various actions, both man-made and environmental, to the methodology of structural analysis and assessment, to material properties, to the inverse identification and monitoring of structural resistance among others. The main focus is the development of a holistic performance based design approach for new and existing structures and infrastructures.

    The objective of TG2.8 is to promote and to provide on the basis of the guide to good practice “safety and performance concepts – reliability assessment of concrete structures” the theoretical and practical developments for the performance based design. This includes structural safety, serviceability and reliability, advanced methodology including probabilistic methods, inverse analyses techniques, monitoring methods, and performance and optimised life-cycle cost based design concepts.


    Konrad BergmeisterConvener
    Konrad Berg-meister
    Luc TaerweCo-convener
    Luc Taerwe

    First name Last name Country Affiliation
    Dirk Proske Austria Universität für Bodenkultur
    David Lehky Czech Republic Brno University of Technology
    Andrzej Nowak United States University of Nebraska
    Dan Frangopol United States Lehigh University
    Drahomir Novak Czech Republic Technical University of Brno
    Jaime Fernández Gomez Spain Universidad Politecnica de Madrid
    Antonino Recupero Italy -
    Konrad Bergmeister Austria Univ. Bodenkultur
    André de Chefdebien France Rector Lesage
    Alfred Strauss Austria BOKU University
    Raphael Steenbergen Netherlands TNO Structures and Safety
    Ainars Paeglitis Latvia -
    C.-A. Graubner Germany Techn. University Darmstadt
    David Fernández-Ordóñez Switzerland fib
    Hans-Dieter Beushausen South Africa University of Cape Town
    Roman Wan-Wendner Belgium Ghent University
    José Campos e Matos Portugal University of Minho
    Christian Bucher Austria Techn. Univ. Wien
    Robby Caspeele Belgium Ghent University
    Nick Zygouris Greece Lithos Consulting Engineers
    Luc Taerwe Belgium Ghent University

  • TG2.9 - Fastenings to structural concrete and masonry

    The modern fastening technique is employed extensively for the transfer of concentrated loads into concrete and masonry structures. Cast-in-place anchors, placed in the formwork before casting of the concrete, as well as post-installed anchors and reinforcing bars, which are installed in hardened structural concrete or masonry, are equally common. Loads are transferred into the concrete or masonry by mechanical interlock, friction, bond or a combination of these mechanisms. However, independently of the load-transfer mechanism, all anchorages rely on the tensile strength of the concrete or masonry, a fact which must be taken into account in both assessment and design. Despite the widespread use of cast-in-place as well as post-installed anchors and reinforcing bars in construction, the overall level of understanding in the engineering community regarding their behaviour remains quite limited.

    In order to improve the general state of knowledge in this field, Task Group 2.9 “Fastenings to Structural Concrete and Masonry” (former Special Activity Group 4) was formed.

    The aim of TG2.9 is to collect and discuss the latest research results in the field of fastening technology, to identify new areas of research and to synthesise the research results in harmonised provisions for the design of fastenings.


    Rolf EligehausenConvener
    Rolf Eligehausen

    First name Last name Country Affiliation
    Giovanni Muciaccia Italy Politecnico di Milano
    Akanshu Sharma United States Purdue University
    Yoshiaki Nakano Japan University of Tokyo
    Elisabeth Vintzileou Greece National Technical University Athens
    Tomoaki Akiyama Japan Tokyo Soil Research CO., LTD
    Philipp Grosser Liechtenstein Hilti Corporation
    Jörg Asmus Germany IEA GmbH & Co. KG
    Yasuhiro Matsuzaki Japan Science University of Tokyo
    Rainer Mallee Germany -
    Dieter Lotze Germany Universität Stuttgart, Materialprüfungsanstalt Otto-Graf-Institut
    Klaus Block Germany fobatec GmbH
    Kurt Stochlia United States ICC Evaluation Service
    Yasutoshi Yamamoto Japan GAL Building Consultant Office
    Matthew Hoehler United States Nat. Inst. of Standards & Technologies
    Yoji Hosokawa Japan The Tokyo University
    Andra Hörmann-Gast United States ICC Evaluation Service, LLC
    Frank Haüsler Germany Halfen GmbH
    Anders Bergkivist Sweden Vattenfall
    Todd Davis United States Milwaukee School of Engineering
    Jay Dorst United States Atlas Consulting Group
    Mazen Ayoubi Germany Jordahl GmbH
    Shigehiro Ando Japan Sumitomo Osaka Cement
    Jean-Paul Marasco France ITW-Spit
    Peter Schillinger Germany fischerwerke GmbH & Co. KG
    David Xiong China Hilti
    Oliver Zeman Austria Universität für Bodenkultur
    Feng Zhu Germany Fischerwerke GmbH & Co. KG
    Brian Gerber United States IAPMO
    Thomas Kuhn Germany Adolf Würth GmbH & Co KG
    J. Bret Turley United States Simpson Strong Tie Company, Inc.
    Mark Ziegler United States Powers Fasteners Inc.
    Thomas Kolden United States Element Materials Technology
    Howard Silverman United States ICC - Evaluation Service
    Valerie Rostaind France Spit
    Philipp Mahrenholtz Germany Stanley Black & Decker Deutschland GmbH
    Rasoul Nilforoush Sweden Luleå University of Technology
    Andreas Wendt United States Simpson Strong Tie Company, Inc.
    Catherina Thiele Germany Technische Universität Kaiserlautern
    Pierre Pimienta France CSTB - Centre Scien. et Techn. du Bâtiment
    Gerhard Lange Germany Deutsches Institut für Bautechnik
    Nicolas Pinoteau France CSTB
    Jürgen Stork Germany Consultant
    Konrad Bergmeister Austria Univ. Bodenkultur
    Jochen Buhler Germany Adolf Würth GmbH & Co KG
    Thierry Guillet France CSTB
    Jan Hofmann Germany IWB, Universität Stuttgart
    Torsten Rutz Germany MKT Metall-Kunststoff-Technik GmbH
    John Silva United States Hilti Inc.
    Friedrich Wall Liechtenstein Hilti AG
    Philipp Strater Germany Chemofast Anchoring GmbH
    Ronald Cook United States University of Florida
    Longfei Li Germany Dr. Li Anchor Profi GmbH
    David Fernández-Ordóñez Switzerland fib
    Geoff Fletcher Australia National Precast Concrete Assoc Australia
    Norbert Randl Austria Carinthia Univ. of Applied Sciences
    Muneomi Takahashi Japan Hilti Japan
    Rolf Eligehausen Germany IWB, Universität Stuttgart
    Lennart Elfgren Sweden Luleå University of Technology
    Jorma Kinnunen Finland Peikko Group Corporation
    Roman Wan-Wendner Belgium Ghent University
    Jake Olsenv United States Powers Fasteners
    Alper Ilki Turkey ITU - Istanbul Technical University
    Werner Fuchs Germany Universität Stuttgart
    Christoph Mahrenholtz Germany Jordahl GmbH
    Jian Zhao United States University of Wisconsin
    Thomas Cebulla Germany S&P Software Consulting & Solutions GmbH
    Omar Al-Mansouri France HILTI
    Thilo Pregartner Germany fischerwerke GmbH & Co. KG
    Máté Tóth Germany fischerwerke GmbH & Co. KG
    Chiwan Hsieh Taiwan, Province of China National Pingtung University of Science and Technology
    Vincent Chui United States ICC-Evaluation Service
    Andreas Beer Germany Halfen GmbH
    Thomas Sippel Finland Peikko Group Corp.
    Adeola Adediran United States Bechtel
    Beatrix Wittstock Germany Deutsches Institut für Bautechnik
    Ulrike Kuhlmann Germany University of Stuttgart
    Thilo Fröhlich Germany University of Stuttgart, Materials Testing Institute (Otto-Graf-Institut)
    Boglárka Bokor Liechtenstein Hilti Corporation
    Martin Umminger Germany Adolf Würth GmbH & Co. KG
    Giovacchino Genesio Germany Hilti Entwicklungsges. mbH
    Andreas Kummerow Germany Deutsches Institut für Bautechnik
    Emanuel Ghermanschi-Lungu United Kingdom ECAP
    Tilak Pokharel Australia Australian Engineered Fasteners and Anchors Council (AEFAC)
    Dheeraj Waghmare United States Purdue University
    Patricio Quintana Gallo Germany University of Rostock

    • WP2.9.1 - Review of current fib model with a view to MC2010 and model for anchor reinforcement
       
      Revision of the design model for anchorage reinforcement taking into account bond provisions of the fib MC 2010.

      Akanshu SharmaConvener
      Akanshu Sharma

      First name Last name Country Affiliation
      Akanshu Sharma United States Purdue University
      Jörg Asmus Germany IEA GmbH & Co. KG
      Jan Hofmann Germany IWB, Universität Stuttgart
      John Silva United States Hilti Inc.
      David Fernández-Ordóñez Switzerland fib
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Lennart Elfgren Sweden Luleå University of Technology
      Thomas Sippel Finland Peikko Group Corp.
      Adeola Adediran United States Bechtel
      Martin Umminger Germany Adolf Würth GmbH & Co. KG

    • WP2.9.2 - Open topics in the current design guide
       
      Review of the design provisions for anchorages in respect to inconsistencies and new research results and development of improved design provisions.

      Jürgen StorkConvener
      Jürgen Stork

      First name Last name Country Affiliation
      Rainer Mallee Germany -
      Andreas Wendt United States Simpson Strong Tie Company, Inc.
      Thilo Pregartner Germany fischerwerke GmbH & Co. KG
      Jürgen Stork Germany Consultant
      Jochen Buhler Germany Adolf Würth GmbH & Co KG
      Friedrich Wall Liechtenstein Hilti AG
      Longfei Li Germany Dr. Li Anchor Profi GmbH
      David Fernández-Ordóñez Switzerland fib
      Akanshu Sharma United States Purdue University
      Máté Tóth Germany fischerwerke GmbH & Co. KG
      Boglárka Bokor Liechtenstein Hilti Corporation
      Martin Umminger Germany Adolf Würth GmbH & Co. KG

    • WP2.9.3 - Shear lugs
       
      Development of provisions for the design of shear lugs. A proposal for designing fastenings with shear lugs has been accepted by TG2.9 and will be incorporated in the new edition of the fib design guide.

      Ronald CookConvener
      Ronald Cook

      First name Last name Country Affiliation
      Harald Michler Germany Technische Universität Dresden
      Jürgen Stork Germany Consultant
      John Silva United States Hilti Inc.
      Ronald Cook United States University of Florida
      David Fernández-Ordóñez Switzerland fib
      Rolf Eligehausen Germany IWB, Universität Stuttgart

    • WP2.9.4 - Fatigue loading
       
      Review of the existing simplified design provisions for anchorages under fatigue loading and development of less conservative design provisions.

      Dieter LotzeConvener
      Dieter Lotze
      Mate TothCo-convener
      Mate Toth

      First name Last name Country Affiliation
      Dieter Lotze Germany Universität Stuttgart, Materialprüfungsanstalt Otto-Graf-Institut
      Klaus Block Germany fobatec GmbH
      Jan Hofmann Germany IWB, Universität Stuttgart
      Friedrich Wall Liechtenstein Hilti AG
      Longfei Li Germany Dr. Li Anchor Profi GmbH
      David Fernández-Ordóñez Switzerland fib
      Máté Tóth Germany fischerwerke GmbH & Co. KG
      Thomas Sippel Finland Peikko Group Corp.
      Thilo Fröhlich Germany University of Stuttgart, Materials Testing Institute (Otto-Graf-Institut)
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Thilo Pregartner Germany fischerwerke GmbH & Co. KG

    • WP2.9.5 - Bonded anchors under sustained load
       
      Review of research results on bonded anchors under sustained load and development of provisions for the design of anchorages with bonded anchors and connections with post-installed reinforcement to take into account the negative influence of sustained load. A proposal for design provisions has been accepted by TG2.9 and will be incorporated in the fib design guide.

      Jan HofmannConvener
      Jan Hofmann
      Ronald CookConvener
      Ronald Cook

      First name Last name Country Affiliation
      Thierry Guillet France CSTB
      Jan Hofmann Germany IWB, Universität Stuttgart
      Joachim Schätzle Germany Fischerwerke GmbH & Co. KG
      Friedrich Wall Liechtenstein Hilti AG
      Ronald Cook United States University of Florida
      David Fernández-Ordóñez Switzerland fib
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Omar Al-Mansouri France HILTI

    • WP2.9.6 - Post-installed reinforcement – Harmonisation of rules for reinforced concrete and anchorages with bonded anchors and post-installed reinforcement
       
      Development of a harmonised design concept for connections with bonded anchors and postinstalled reinforcement under static and seismic loading.

      John F. SilvaConvener
      John F. Silva

      First name Last name Country Affiliation
      Akanshu Sharma United States Purdue University
      John Silva United States Hilti Inc.
      David Fernández-Ordóñez Switzerland fib
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Christoph Mahrenholtz Germany Jordahl GmbH

    • WP2.9.7 - Splitting of bonded anchors
       
      Development of design provision for bonded anchors to prevent splitting of the concrete member during pretensioning and loading which shall replace the currently required approval tests.

      Jörg AsmusConvener
      Jörg Asmus

      First name Last name Country Affiliation
      Jörg Asmus Germany IEA GmbH & Co. KG
      Thierry Guillet France CSTB
      Ronald Cook United States University of Florida
      David Fernández-Ordóñez Switzerland fib
      Andreas Kummerow Germany Deutsches Institut für Bautechnik
      Omar Al-Mansouri France HILTI

    • WP2.9.8 - Required stiffness of baseplates
       
      In general, anchorages are designed under the assumption that the baseplate is stiff. However, no criteria are given in the fib Design Guide to assure a stiff baseplate. These provisions are under development. Furthermore, design rules for fastenings with flexible base plates are being discussed.

      Giovanni MuciacciaConvener
      Giovanni Muciaccia

      First name Last name Country Affiliation
      Jürgen Stork Germany Consultant
      Friedrich Wall Liechtenstein Hilti AG
      Ronald Cook United States University of Florida
      Longfei Li Germany Dr. Li Anchor Profi GmbH
      David Fernández-Ordóñez Switzerland fib
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Akanshu Sharma United States Purdue University
      Brian Gerber United States IAPMO
      Dieter Lotze Germany Universität Stuttgart, Materialprüfungsanstalt Otto-Graf-Institut
      Giovanni Muciaccia Italy Politecnico di Milano
      Thilo Pregartner Germany fischerwerke GmbH & Co. KG
      Feng Zhu Germany Fischerwerke GmbH & Co. KG
      Beatrix Wittstock Germany Deutsches Institut für Bautechnik
      John Silva United States Hilti Inc.
      Clement Herve France EDF
      Jörg Asmus Germany IEA GmbH & Co. KG
      Omar Al-Mansouri France HILTI
      Rainer Mallee Germany -
      Boglárka Bokor Liechtenstein Hilti Corporation
      Martin Umminger Germany Adolf Würth GmbH & Co. KG

    • WP2.9.9 - Fire Resistance of anchors and post-installed reinforcement
       
      Development of more refined provisions for the design of anchorages with all types of anchors and of connections with post-installed reinforcement under fire exposure. A proposal for the design of fastenings with post-installed reinforcement under fire exposure has been accepted by TG2.9. These will be incorporated in the fib design guide.

      Thierry GuilletConvener
      Thierry Guillet

      First name Last name Country Affiliation
      Kurt Stochlia United States ICC Evaluation Service
      Pierre Pimienta France CSTB - Centre Scien. et Techn. du Bâtiment
      Gerhard Lange Germany Deutsches Institut für Bautechnik
      Nicolas Pinoteau France CSTB
      Thierry Guillet France CSTB
      Jan Hofmann Germany IWB, Universität Stuttgart
      John Silva United States Hilti Inc.
      David Fernández-Ordóñez Switzerland fib
      Muneomi Takahashi Japan Hilti Japan
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Akanshu Sharma United States Purdue University
      Omar Al-Mansouri France HILTI

    • WP2.9.10 - Evaluation and assessment of existing anchorages
       
      Development of provisions for evaluation and assessment of existing anchorages which are currently not available but urgently needed.

      Lennart ElfgrenConvener
      Lennart Elfgren

      First name Last name Country Affiliation
      Lennart Elfgren Sweden Luleå University of Technology
      Giovanni Muciaccia Italy Politecnico di Milano
      Longfei Li Germany Dr. Li Anchor Profi GmbH
      Akanshu Sharma United States Purdue University
      David Fernández-Ordóñez Switzerland fib
      Jörg Asmus Germany IEA GmbH & Co. KG
      Rolf Eligehausen Germany IWB, Universität Stuttgart
      Yasuhiro Matsuzaki Japan Science University of Tokyo
      Rasoul Nilforoush Sweden Luleå University of Technology
      John Silva United States Hilti Inc.
      Omar Al-Mansouri France HILTI
      Thierry Guillet France CSTB
      Martin Umminger Germany Adolf Würth GmbH & Co. KG

    • WP2.9.11 - Steel shear strength of anchorages with stand-off base plate connection
       
      Development of provisions to calculate the design steel shear strength of anchorages with stand-off base plate connections. Design provisions proposed by WP have been accepted by TG2.9 and will be incorporated in the fib design guide.

      Ronald CookConvener
      Ronald Cook

      First name Last name Country Affiliation
      Giovanni Muciaccia Italy Politecnico di Milano
      Jan Hofmann Germany IWB, Universität Stuttgart
      John Silva United States Hilti Inc.
      Ronald Cook United States University of Florida
      David Fernández-Ordóñez Switzerland fib
      Rolf Eligehausen Germany IWB, Universität Stuttgart

    • WP2.9.12 - Seismic Design
       
      Development of provisions for seismic design of anchorages.

      Giovanni MuciacciaConvener
      Giovanni Muciaccia

      First name Last name Country Affiliation
      Giovanni Muciaccia Italy Politecnico di Milano
      Akanshu Sharma United States Purdue University
      David Fernández-Ordóñez Switzerland fib
      Omar Al-Mansouri France HILTI
      Thomas Sippel Finland Peikko Group Corp.
      Martin Umminger Germany Adolf Würth GmbH & Co. KG
      Paolo Martino Calvi United States -

  • TG2.10 - Textile reinforced concrete construction and design

    New material composites such as textile/carbon reinforced concrete have been developed during the past two decades. Textile reinforced concrete is a composite material where the concrete is reinforced with textile structures instead of classical reinforcement steel. Apart from alcali resistant glass and similar materials, carbon has become the prevalent reinforcement material and lead to the development of so-called carbon concrete. Carbon textile fabrics as well as carbon bars are used as reinforcement material for carbon concrete. Carbon's resistance to corrosion allows an enormous reduction of concrete cover thickness in comparison to classical steel reinforced concrete.

    These developments offer new ways in concrete constructions due to the possibility for curved, thinner and more filigree construction components. This might be a starting point for several new research work. Therefore, the work of a task group is considered meaningful. The task group "Textile reinforced concrete" will mainly (not exclusively) deal with carbon reinforcement. The task group may contribute in working out rules and compiling guidelines for the design of constructions made of the new composite material textile/carbon reinforced concrete.

    The objective of the proposed task group is construction and design of textile reinforced concrete. Regarding the reinforcement material, carbon is in focus. The aim of the task group is to contribute in working out rules and compiling guidelines for the design of constructions made of textile/carbon reinforced concrete.


    Manfred CurbachConvener
    Manfred Curbach

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Rostislav Chudoba Germany RWTH Aachen University
    Erez GAL Israel Ben-Gurion University of the Negev
    Alva Peled Israel Ben-Gurion University of the Negev
    Michael Raupach Germany RWTH Aachen University
    Silke Scheere Germany TU Dresden
    Barzin Mobasher United States Arizona State University
    Harald Michler Germany Technische Universität Dresden
    Giuseppe Mancini Italy Politecnico Torino
    Manfred Curbach Germany Technische Univ. Dresden
    Josef Hegger Germany RWTH Aachen
    Viktor Mechtcherine Germany Technical Univ. Dresden
    David Fernández-Ordóñez Switzerland fib
    ab van den bos Netherlands NLyse
    Thanasis Triantafillou Greece University of Patras
    Norbert Will Germany RWTH Aachen University
    Tine Tysmans Belgium Vrije Universiteit Brussel (VUB)
    Rolf Alex Germany Deutsches Institut für Bautechnik (DIBt)
    Birgit Beckmann Germany TU Dresden
    Isabella Giorgia Colombo Italy Politecnico di Milano
    Arnon Bentur Israel Technion - Israel Institute of Technology
    Matteo Colombo Italy Politecnico di Milano
    Flavio De Andrade Silva Brazil Pontificia Universidade Católica do Rio de Janeiro
    Lars Eckfeldt Germany Deutsches Institut für Bautechnik (DIBt)
    Petr Hajek Czech Republic Czech Technical University in Prague
    Oliver Heppes Germany Goldbeck Bauelemente Bielefeld SE
    Benjamin Kromoser Austria Universität für Bodenkultur Wien
    Minoru Kunieda Japan GIfu University
    Steffen Müller Germany TU Dresden
    Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
    Antoine Naaman United States University of Michigan
    Corina Papanikolaou Greece University of Patras - VAT Nr 998219694
    Miguel Fernández Ruiz Spain Universidad Politécnica de Madrid
    Frank Schladitz Germany TU Dresden
    Alexander Schumann Germany TU Dresden
    Amir Si Larbi France Civil Engineering Department, Ecole Nationale d'ingénieurs de Saint-Etienne
    Jan Wastiels Belgium Vrije Universiteit Brussel
    Juliane Wagner Germany TU Dresden
    Marco di Prisco Italy Politecnico di Milano
    Marko Butler Germany TU Dresden
    Ulrich Häußler-Combe Germany TU Dresden
    Martin Hunger Germany BASF Construction Solutions GmbH
    Peter Jehle Germany TU Dresden
    Philipp Preinstorfer Austria Technische Universität Wien
    Silvio Weiland Germany Loock & Weiland
    Josiane Giese Germany Dresden University
    Bahman Ghiassi United Kingdom University of Birmingham / School of Engineering
    Pietro Mazzuca Italy University of Calabria

  • TG2.11 - Structures made by digital fabrication

    Digital fabrication processes for fabricating concrete-like products, objects and/or structures are typically grouped into three main categories: (i) Layered Extrusion (e.g. contour crafting, concrete printing etc.), (ii) Binder Jetting (e.g. D-shape), (iii) Slip-forming (e.g. smart dynamic casting). However, to date, many important developments have been accomplished for layered extrusion technology, consisting of a digitally controlled moving printing head (or nozzle) that precisely lays down the concrete or mortar material layer-by-layer.

    It is clear that the full understanding of the structural performances of digitally fabricated elements represents noteworthy progress in supporting the design of such innovative structures. In this way, reliable structural concepts and assessment methodologies could be integrated within existing international building codes/standards and adapted to the particularities of DFC, providing effective recommendations to the construction industry stakeholders.

    The primary objective of the task group is to identify limiting aspects of the current design practice for the implementation of novel, digitally-fabricated concrete structures. Based on that, the task group will address fundamental structural issues related to the particularities of DFC with the final aim of providing effective guidelines for code-compliant applications.


    Costantino MennaConvener
    Costantino Menna
    Domenico AsproneCo-Convener
    Domenico Asprone

    First name Last name Country Affiliation
    Liberato Ferrara Italy Politecnico di Milano
    Domenico Asprone Italy University of Naples Federico II
    Costantino Menna Italy University of Naples Federico II
    Kim Van Tittelboom Belgium University of Ghent
    Jaime Mata-Falcón Spain Universitat Politècnica de València
    Theo Salet Netherlands Witteveen + Bos Raadgev. Ing.
    David Fernández-Ordóñez Switzerland fib
    Freek Bos Germany Technische Universiteit Eindhoven
    Richard Buswell United Kingdom Loughborough University
    Sergio Cavalaro United Kingdom Loughborough University
    Geert de Schutter Belgium Ghent University
    Jacques Kruger South Africa Laboratory Manager & Researcher
    Dirk Lowke Germany Technische Universität Braunschweig
    Tor Martius-Hammer Norway SINTEF AS
    Viktor Mechtcherine Germany Technical Univ. Dresden
    Alessandro Morbi Italy ITALCEMENTI S.p.A. - HeidelbergCement Group
    Sandro Moro Italy BASF
    Venkatesh Naidu Nerella Germany TU-Dresden
    Nicolas Roussel France IFSTTAR
    Branko Šavija Netherlands Delft University of Technology
    Matthieu Schipper Netherlands Delft University of Technology
    Erik Schlangen Netherlands Delft University of Technology
    Weiqiang Wang China Hohai University
    Paulo J.S. Cruz Portugal University of Minho
    Lucia Licciardello Italy University of Brescia
    Wilson Ricardo Leal da Silva Denmark Teknologisk Institut
    Paul Tykodi United States -
    Ksenija Vasilic Germany German Society for Concrete and Construction Technology
    Navendu Rai United Arab Emirates -
    Helder Filipe Moreira de Sousa Portugal Brisa Group

  • TG2.12 - Protective Concrete Structures against Hazards

    Concrete structures are suitable for the development and construction of protective structures against several kinds of hazards, like a blast, missiles, impact or thermal loads. The reasons for such extreme loadings may be different, but the structures under consideration have to provide conditions for safe and relatively comfortable survival of people inside. The TG2.12 will develop documents which specify the conditions of performance of protective structures and conditions for their design.


    Klaas Van BreugelConvener
    Klaas Van Breugel

    First name Last name Country Affiliation
    Avraham Dancygier Israel Technion-Israel Institute of Technology
    Jaap Weerheijm Netherlands TU Delft
    Peter Jäger Switzerland Peter Jäger Partner Bauingenieure AG
    Klaas van Breugel Netherlands Delft Univ. of Technology
    David Fernández-Ordóñez Switzerland fib
    Sander Meijers Netherlands Royal Haskoning / DHV
    Birgit Beckmann Germany TU Dresden
    Alessandro Stocchi Germany Fraunhofer EMI

    • WP2.12.1 Design of structures subjected to impact and explosion
       
      Concrete structures can be subjected to variable actions inducing very high strain rates, generated by several kinds of hazards, like blast, missiles or fragments, impact, in normal conditions or fire. The reasons for such extreme loadings may be different, but the structures investigated have to provide conditions for safe and relatively comfortable survival of people and equipment inside.
       
      According to the TG 2.12 activity, the action group AG12 has rewritten the chapter 30.2.3 on Impact and Explosion. The synthesis introduced in the Model Code requires a background document able to explain the change introduced in relation to Model Code 2010.
       
      The members of the Working Party have prepared a first draft of a bulletin aimed at introducing the background knowledge that explains the main novelties introduced in the indicated chapter. The idea is to discuss the document together with the interested people of the TG 2.12 in order to give the designers who are called to design protective structures a modern and a reliable basic tool.

      Marco Di PriscoConvener
      Marco Di Prisco
      Ezio CadoniCo-Convener
      Ezio Cadoni

      First name Last name Country Affiliation
      Marco di Prisco Italy Politecnico di Milano
      David Fernández-Ordóñez Switzerland fib
      Josko Ozbolt Germany Universität Stuttgart
      Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
      Avraham Dancygier Israel Technion-Israel Institute of Technology
      Jaap Weerheijm Netherlands TU Delft
      Matteo Colombo Italy Politecnico di Milano
      JIANGPENG SHU Norway Norwegian University of Science and Technology
      Nemkumar Banthia Canada Univ. of British Columbia
      Terje Kanstad Norway The Norwegian Univ.of Science & Tech
      Gerrie Dieteren Netherlands TNO
      Klaas van Breugel Netherlands Delft Univ. of Technology
      Manfred Keuser Germany BUNG Ingenieure A
      François Toutlemonde France Université Gustave Eiffel
      Kim Johansson Finland Concrete Assoc. of Finland
      Viktor Mechtcherine Germany Technical Univ. Dresden
      Manfred Curbach Germany Technische Univ. Dresden
      Barzin Mobasher United States Arizona State University
      Ezio Cadoni Switzerland DynaMat SUPSI Laboratory

  • TG2.13 - Design and assessment for tsunami loading

    The primary objective of the task group (TG) is to identify methodologies for: (i) the design of tsunami resistant structures/infrastructure, (ii) the assessment of existing assets against tsunami-induced loads and (iii) the design/assessment of existing assets towards the sequential hazards such as earthquakes and tsunami, or other triggering hazards. Assets under investigation include RC, masonry, steel and composite structures and infrastructure.

    The TG plans to face structural issues by focusing on the structural response of reinforced concrete structures and infrastructure under tsunami loading, with main focus on:

    • The definition and estimation of loads (i.e., hydrostatic and hydrodynamic horizontal and vertical loads induced by a tsunami, such as buoyancy) acting on structural members for design/assessment of structures and infrastructure;
    • The behaviour of non-structural components, such as infill walls;
    • The structural analysis methodology for design/assessment;
    • Performance levels and safety checks at local and global levels.

    The fundamental knowledge produced in this framework will support the introduction of reliable design/assessment criteria in the field of tsunami engineering. This will provide an improvement with respect to existing international codes and will represent the first guideline for Europe.

    The TG will also address aspects related to the harmonization of tsunami design provisions with existing design provisions for other kind of hazards.


    Rossetto TizianaConvener
    Rossetto Tiziana
    Del Zoppo MartaCo-Convener
    Del Zoppo Marta

    First name Last name Country Affiliation
    Tiziana Rossetto United Kingdom University College London
    Marta Del Zoppo Italy University of Naples Federico II
    Andre Barbosa United States Structural Engineering
    Ian Robertson United States University of Hawaii at Manoa
    Toshikazu Kabeyasawa Japan Faculty of Urban Environmental Sciences
    Ioan Nistor Canada University of Ottawa
    Dawn Lehman United States University of Washington
    Andrea Prota Italy Universita di Napoli Federico II
    Marco Baiguera United Kingdom University of Southampton
    Kyriazis Pitilakis Greece Aristotle University of Thessaloniki
    Priyan Dias Sri Lanka University of Moratuwa
    Katsu Goda Canada Western University
    Daniel Cox United States Oregon State University
    Gary Chock United States Martin, Chock & Carden, Inc.
    Dan Palermo Canada York University
    Patricio Catalan Chile -
    Cláudia Reis Portugal Instituto Superior Técnico
    David McGovern United Kingdom London South Bank University
    Taro Arikawa Japan Chuo University
    Davide Wüthrich Netherlands -
    Jonas Cels United Kingdom -
    Andrew Foster United Kingdom -
    Ian Chandler United Kingdom HR Wallingford
    Marco Di Ludovico Italy University of Naples
    Maria Teresa De Risi Italy University of Naples Federico II
    Julian Thamboo Sri Lanka South Eastern University of Sri Lanka
    Keith Adams United Kingdom -
    Angelos Dimakopoulos Greece University Campus, Rio, Patra

  • TG2.14 - Open-source code development by the fib

    The fib has started developing an open-source Python package containing models from the fib Model Code. Github is used as a platform for version control and code collaboration. On the long-term, this package should contain all models in the fib Model Code. When sufficiently mature, the package should be published on PyPI.org to arrange for easy distribution. The package should be published with a license that grants the user flexible rights to use, study, edit and publish the source code, without warranty of any kind.

    Primary objective of the TG: serve as a team of core developers or maintainers of the Python package. This includes, but is not limited to:

    • Contribute code to the package.
    • Respond to issues that are reported and initiate relevant actions.
    • Maintain a CI/CD, continuous integration and continuous delivery, pipeline.
    • Review contributions from the community, and merge these when properly matured.

    The fib seeks contributions from the fib and the engineering community as a whole.


    Morten EngenConvener
    Morten Engen
    Diego Alexandro TalledoCo-Convener
    Diego Alexandro Talledo

    First name Last name Country Affiliation
    Morten Engen Norway Multiconsult AS
    David Fernández-Ordóñez Switzerland fib
    DIEGO ALEJANDRO TALLEDO Italy University IUAV of Venice
    Daniel González de la Morena Spain Fhecor
    Javier García Hernando Spain Fhecor
    Carlos Mestre Spain Fhecor
    Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
    Arthur Slobbe Netherlands TNO
    Jemma Ehsman Australia Rio Tinto - Dampier Salt
    Gijs Eumelen Netherlands TNO

  • TG2.15 - Bridges with combined reinforcement

    Unbonded – external post-tensioning (PT) tendons are gaining interest world-wide within the concrete bridge community. The ability to address unforeseen issues has always been valued by bridge engineers and unbonded external PT tendons provide bridge designers and owners the flexibility to address these issues through their ability to be replaced while the bridge is in-service. Four countries, France, Germany, Japan, and United States are using this technology to provide tendon replaceability.

    The use of unbonded tendons has led to components with both bonded and unbonded prestressing and/or mild reinforcement. Research has shown that the use of mixed reinforcement conditions (i.e. bonded and unbonded PT with and without mild reinforcement) in concrete members has structural implications (UF Report). Most current specifications consider their design approach as conservative for the design of components with mixed reinforcement conditions. However, research has shown that the performance and appropriate design of these members is complex and comprehensive guidance is needed to educate engineers on the design of these unique components. Therefore, there is a great need for clear design guidance to bridge designers on this unique and increasingly popular posttensioned component.

    This guidance can have at least four purposes: i) provide background information on the performance of mixed reinforced elements with varying amounts of unbonded to bonded PT ratios, ii) synthesize current codified design methods for members with mixed reinforcement, iii) develop guidance on appropriate analysis methods, and iv) develop design approach for flexural capacity, including resistance factors & associated ductility requirements.

    The primary objective of the task group (TG) is to serve as a team of core technical reviewers for the development of this technical report. Expertise in the design of complex concrete elements and experience with design methods for mixed reinforced members is desired.


    John CorvenConvener
    John Corven
    Oguzhan BayrakCo-Convener
    Oguzhan Bayrak

    First name Last name Country Affiliation
    John A Corven United States Hardesty & Hannover Convener
    Oguzhan Bayrak United States Univ. of Texas at Austin
    David Fernández-Ordóñez Switzerland fib
    Christian Gläser Germany DYWIDAG-Systems International
    Adrian Gnägi Switzerland VSL International Ltd.
    Jan Vítek Czech Republic Metrostav a. s.
    Tommaso Ciccone Italy TENSA (Tensacciai s.r.l.)
    Reggie H. Holt United States Federal Highway Administration
    Will Potter United States Florida Department of Transportation
    Richard Brice United States Washington DOT
    Gregory Hunsicker United States OnPoint Engineering and Technology LLC
    Ivica Zivanovic France Freyssinet
    Jerry Pfutner United States COWI
    Dimitrios Paspastergiou Switzerland FEDRO
    David Garber United States FHWA
    Eisuke Nakamura Japan Public Works Research Institute

 

COM1: Concrete structures

Motivation

Commission 1 (COM1) seeks to encourage and develop good practices in the design of concrete structures, with a special emphasis on innovation and imagination. Its work should complement national, regional (e.g. Eurocodes), as well as international codes (e.g. the fib Model Code for Concrete Structures 2010), which in principle give only design specifications.

Scope and objective of technical work

COM1 examines all aspects of specific types of structures, from their structural and architectural design to construction and service life.

COM1 aims to provide state-of-the-art documentation and recommendations for all types of structures where structural concrete plays a significant role. This will apply in priority to fields of development where data and guidelines are not yet available, either new types of structures or implementation of new developments of materials, or a combination of both. COM1 endeavours to promote practices leading to sound, economical, durable and aesthetic design, with special attention to sustainable development principles. 

 

1706 ComConv AlbertoMeda BWCommission Chair
Alberto Meda
Arianna MinorettiDeputy Chair
Arianna Minoretti
TBCCo Deputy Chair
Aad van der Horst

  • TG1.1 - Bridges

    Task Group 1.1 (TG1.1) is dedicated to bridge engineering. All types of bridges are concerned, with a predominance of concrete bridges. Theoretical and practical aspects are treated, as well as construction techniques. Innovations and recent developments but also established good practices are highlighted. Emphasis is placed on bridge architecture and design.

    The general objective of the task group is to provide design guides, recommendations, practical design rules and technical advice on bridge design and related construction techniques. Rules of good practice and recommendations for the correct use of materials and techniques are formulated.


    Thierry DelémontConvener
    Thierry Delémont

    • WP1.1.1 - Bridges for high-speed trains
       
      Working Party 1.1.1 (WP 1.1.1) aims to provide guidance for designers of bridges for high speed trains, covering issues such as loads, dynamics, rail deck interaction, wind, slipstream forces, accidental situations, maintenance and inspection, etc. The document will be based on existing guidance edited by the German railway administration. International expertise will broaden the recommendations and bring them to an international level.

      Steffen MarxConvener
      Steffen Marx

      First name Last name Country Affiliation
      Thomas Fackler Germany Schlaich Bergermann und Partner GmbH
      Günter Seidl Germany SSF Ingenieure AG
      Patrice Schmitt France SNCF
      Steffen Marx Germany Technische Universität Dresden
      David Fernández-Ordóñez Switzerland fib
      Miguel Angel Astiz Suarez Spain Carlos Fernandez Casado S. L.
      Juan Sobrino Spain Pedelta, S. L.
      Junling Sun China Sun Engineering Consultants Intl., Inc.

    • WP1.1.3 - Integral bridges
       
      The scope of WP 1.1.3 is to prepare practical guidelines on semi-integral and integral bridges. The objective of these guidelines is to define the current best practical response to specific problems associated with semi-integral and integral bridges from an international perspective. It will be based on existing guidelines, results from scientific research and feedback from practical experience.

      f26a5b1890dc0eaf1ac664c5Convener
      Alessandro Parlermo
      f26a5b1890dc0eaf1ac664c5Co-Convener
      Jessica Sanderberg

      First name Last name Country Affiliation
      Murat Dicleli Turkey Middle East Technical University
      Philipp Wenger Germany schlaich bergermann partner
      Sergio Breña United States University of Massachusetts Amherst
      Philippe Jandin France CEREMA
      Rémi Havy France ARCADIS
      Peter Collin Sweden Luleå University of Technology
      Damien Champenoy France CEREMA
      João Almeida Portugal Instituto Superior Técnico Lisboa
      Michel Moussard France Consultant
      Anssi Laaksonen Finland Tampere University of Technology
      Steffen Marx Germany Technische Universität Dresden
      Alejandro Pérez Caldentey Spain FHECOR Ingenieros Consultores/Universidad Politécnica de Madrid
      Alessandro Palermo United States University of California, San Diego
      Walter Kaufmann Switzerland ETH Zürich
      David Fernández-Ordóñez Switzerland fib
      Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
      Susumu Inoue Japan Osaka Institute of Technology
      Marcos Sanchez Ireland ARUP
      Jessica Sandberg United Kingdom Atkins
      Sotiria Stefanidou Greece Aristote University of Thessaloniki
      Petr Tej Czech Republic Czech Technical University
      Max Herbers Germany University of Dresden
      Moustafa Al-Ani New Zealand -
      Bruno Briseghella China Fuzhou University
      Habib Tabatabai United States University of Wisconsin-Milwaukee
      Jerome Michel France Cerema

    • WP1.1.4 - Light railway bridges
       
      While road and railway bridges benefit from standards and extensive documentation often published by state agencies, it is not the case for lightweight railway bridges. This can be explained by the variety of systems ranging from LRT (Light Rail Transit) to MRT (Mass Rapid Transit) and the fact that these systems are mainly operating at a city or regional level.

      However, from a bridge engineering perspective, common features, particular requirements and good practices for design and construction that specifically apply to these transportation modes can be identified.

      The general objective of this working party is to provide a state-of-the-art report for the design of LRT and MRT bridges.

      f26a5b1890dc0eaf1ac664c5Convener
      TBD

      First name Last name Country Affiliation
      David Fernández-Ordóñez Switzerland fib
      Gopal Srinivasan United Kingdom Arup
      Sherif Ezzat Egypt econstruct
      Huy Lam France Systra
      Tatsuya Nihei Japan Railway Technical Research Institute
      Chiayu Chen Taiwan, Province of China TYLIN International Group

    • WP1.1.6 - Design Loads for long span bridges
       
      The design of long span bridges goes beyond the application range of all the codes of practice and usual construction recommendations. While it is possible to use and extrapolate codes for the design of single elements, it is not the same for the initial definition of data, and especially to fix the loading scheme of the bridge which are not covered by codes.

      The goal of the group is to establish a clear philosophy and some basic rules to fix the loading schemes of the bridge in relation to its span length and its typology.

      Thierry DélémontConvener
      Thierry Délémont

      First name Last name Country Affiliation
      David Fernández-Ordóñez Switzerland fib
      Thierry Delemont Switzerland T-ingenierie SA
      Michel Virlogeux France Virlogeux Consulting
      Matthieu Galland United Kingdom Arup
      Chan Park Korea, Republic of COWI Korea
      Hiroyuki Uchibori Japan Sumitomo Mitsui Construction Co., Ltd.
      Fangyin Zhang United States Thornton Tomasetti

    • WP1.1.7 - Performance Evaluation and Service Life Extension of Existing Bridges
       
      There are a large number of existing reinforced concrete (RC) bridges in mainland Europe, UK, and the US that are either close to their useful service lives or their useful service lives have already passed. Furthermore, these bridges increasingly subjected to variety of short and long-term environmental threats. Short-term threats include extreme events such as floods, storms and in some parts of the world earthquakes, tsunamis etc. Long-term threats are related to infrastructure material ageing and climate change. The global population is projected to reach 9.5b and by 2050, leading to significantly increased need for efficient use and maintenance of existing and construction of new transport infrastructure. Bridges are critical nodes in any transport infrastructure network, and they compromise the functionality of the network if they malfunction or are disabled.

      In order to safely and accurately assess the structural performance of existing bridges and extend their service life, particular attention must be paid to structural detailing, loading (service loads, abnormal loads, and extreme events), and ongoing deterioration, and repair/strengthening options. This will be done in collaboration with other commissions to avoid any overlap between the different commissions.

      The primary objectives of the working party (WP) includes, but is not limited to:
      • Assessment of Structural Vulnerability
      • Corrosion Impact on Remaining Service Life of Bridge
      • Low-Carbon Repair and Strengthening Methods
      • Integration with Sustainable Design and Assessment Practices
      • Seismic Performance Consideration
      • Collaboration and Knowledge Sharing

      Mohammad Mehdi KashaniConvener
      Mohammad Mehdi Kashani
      Zila RinaldiCo-Convener
      Zila Rinaldi

      First name Last name Country Affiliation
      David Fernández-Ordóñez Switzerland fib
      Mohammad Mehdi Kashani United Kingdom Associate Professor of Structural Engineering
      Zila Rinaldi Italy University of Rome “Tor Vergata”
      Alberto Meda Italy University of Rome “Tor Vergata”
      Thierry Delemont Switzerland T-ingenierie SA
      Maria Rosaria Pecce Italy University of Naples Federico II
      Chris Hendy United Kingdom Atkins
      Alan O'Connor Ireland University of Dublin
      Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
      Beatrice Belletti Italy Univ. degli Studi di Parma - Engineering and Architecture
      Fausto Minelli Italy University of Brescia
      Arianna Minoretti Norway Statens vegvesen
      Tor Martius-Hammer Norway SINTEF AS
      Fengqiao Zhang Netherlands TU Delft
      Evangelia Georgantzia United Kingdom City University of London
      Alex Salter United Kingdom Ramboll UK
      Behrouz Shafei United States -

    First name Last name Country Affiliation
    Florent Imberty France Razel SA
    Guido Morgenthal Germany Bauhaus University
    Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
    Peter Curran United Kingdom Ramboll UK
    Miguel Angel Astiz Suarez Spain Carlos Fernandez Casado S. L.
    Steffen Marx Germany Technische Universität Dresden
    Mike Schlaich Germany TU Berlin
    David Fernández-Ordóñez Switzerland fib
    Thierry Delemont Switzerland T-ingenierie SA
    Juan Sobrino Spain Pedelta, S. L.
    Mohammad Mehdi Kashani United Kingdom Associate Professor of Structural Engineering

  • TG1.2 - Concrete structures in marine environments

    Well-designed, well-built concrete structures are particularly suited for the marine environment. Task Group 1.2 has so far focused on structures for oil and gas fields in hostile marine environments (fib Bulletin 50) and on concrete structures in marine environments in general (fib Bulletin 91). A special focus has been done on floating tube bridges to help the designers to consider this promising alternative (fib Bulletin 96).

    Significant experience has been gained from the design and construction of offshore concrete structures of the world and concrete has shown the possibility to design durable structures also in aggressive marine environment.

    The topic of durability is, nowadays, more and more important, especially considering the goals on sustainability that the community is required to reach. Durable, safe and sustainable floating concrete structures will provide an important alternative in a future with lack of space on land and new technological solutions, for example for renewable energy production, that are continuously approaching the market.

    Arianna MinorettiConvener
    Arianna Minoretti

    • WP1.2.1 - Floating concrete structures
       
      In many cases, floating structures have some clear advantages compared to fixed structures. The motivation of the work in this WP is to demonstrate these advantages, and attempt to draw conclusions as to what applications are particularly promising.
       
      The objective of WP1.2.1 is to demonstrate the usefulness of concrete in a modern society where floating structures may be needed. It will identify and consider potential applications of marine floating concrete structures, and then make selections and go into more detail on how the selected applications can be made competitive.

      Tor Ole OlsenConvener
      Tor Ole Olsen

      First name Last name Country Affiliation
      Tor Ole Olsen Norway Olav Olsen a.s.
      Francisco Esteban Lefler Spain FCC Construction
      Harald Rogne Norway Olav Olsen
      Ove Tobias Gudmestad Norway University of Stavange
      Arnstein Godejord United States Arup
      Hilde Benedikte Østlund Norway Kværner
      Mike Paschalis Belgium BESIX
      Wenche Rettedal Norway Statoil
      Tom Wike Norway ØKAW
      Rolf Larssen Norway Aas Jacobsen
      Michel Vache France Doriseng
      Kåre Hjorteset United States BergerABAM
      Milos Zich Czech Republic Strasky, Husty and Partners
      Gordon Jackson United Kingdom Arup Energy
      Kjetil Thorsen Norway Snøhetta
      Steinar Helland Norway S Helland Konsult
      João Almeida Portugal Instituto Superior Técnico Lisboa
      Adrian Gnägi Switzerland VSL International Ltd.
      Terje Kanstad Norway The Norwegian Univ.of Science & Tech
      Milan Kalny Czech Republic Pontex Ltd.
      David Fernández-Ordóñez Switzerland fib
      Stein Atle Haugerud Norway Dr. techn. Olav Olsen a.s.
      Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne)
      Fernando Stucchi Brazil ABECE/EGT
      Luis Peset Gonzales Spain Dragados SA
      Michel Hamon France Doris Engineering
      Scott Haynes Hong Kong VSL
      Paul Notenboom Netherlands Arcadis
      Christophe Rozier France Bouygues Travaux Publics
      Coen Van der Vliet Netherlands Arcadis
      Hugo Corres Spain FHECOR Ingenieros Consultores
      Dag Nikolay Jenssen Norway -

    • WP1.2.2 - Submerged floating tube bridges (SFTB)
       
      Sometimes our infrastructures need to cross water. Immersed tunnels that sit on the seabed are widely used; more than 100 have been built.
       
      Submerged floating tube bridges (SFTB) have never been built. Submerged floating tube bridges are floating bridges, submerged at a defined depth below the water surface. They may be supported between landfalls, either by tension legs or pontoons. They have a closed cross section, like the one of an ordinary tunnel, but they behave like a bridge.
       
      The main scope of this working party is to provide the community with the information needed regarding the SFTB technology.

      Arianna MinorettiConvener
      Arianna Minoretti

      First name Last name Country Affiliation
      Gordon Jackson United Kingdom Arup Energy
      David Fernández-Ordóñez Switzerland fib
      Stein Atle Haugerud Norway Dr. techn. Olav Olsen a.s.
      Arianna Minoretti Norway Statens vegvesen
      Coen Van der Vliet Netherlands Arcadis
      Bjørn Isaksen Norway Norwegian Road Administration
      Hugo Corres Spain FHECOR Ingenieros Consultores
      Tor Ole Olsen Norway Olav Olsen a.s.
      Mathias Egeland Eidem Norway Statens vegvesen (NPRA)
      Marco Novello Italy Sapeim
      Noelia Gonzalez Patiño Spain Ggravity-Dragados
      Yuichiro Kawabata Japan -

    • WP1.2.3 - Environmental benefits of marine concrete structures
       
      The WP would work on the topics of influence of the marine concrete structures on the biological environment, climate challenges (CO2) for marine structures and resilience of marine structures respect to climate changes. An additional topic could be how marine concrete structures can help reducing the negative environmental aspects of nowadays activities, like congestions, polluting factories, renewable energies, food production and so on.

      Arianna MinorettiConvener
      Arianna Minoretti

      First name Last name Country Affiliation
      Arianna Minoretti Norway Statens vegvesen
      Christian John Engelsen Norway SINTEF
      Tim Fristed Norway Multiconsult
      Evert Mul Norway NINA
      Liberato Ferrara Italy Politecnico di Milano
      Satoshi Komatsu Japan -
      Luca Martinelli Italy Politecnico di Milano - Dep. of Civil and Environmental Engineering
      Marco Novello Italy Sapeim
      Tor Ole Olsen Norway Olav Olsen a.s.
      Aad van der Horst Netherlands -
      Lyubomira Vasileva Finland Ramboll Finland

    • WP1.2.4 - Submerged/floating bridges in seismic areas
       
      The WP would work on floating structures as solutions for seismic areas.

      Luca MartinelliConvener
      Luca Martinelli

      First name Last name Country Affiliation
      Luca Martinelli Italy Politecnico di Milano - Dep. of Civil and Environmental Engineering
      David Fernández-Ordóñez Switzerland fib
      Federico Perotti Italy Politecnico di Milano
      Raffaele Landolfo Italy Università degli Studi di Napoli "Federico II"
      Federico Mazzolani Italy Università degli Studi di Napoli "Federico II"
      Beatrice Faggiano Italy Università degli Studi di Napoli "Federico II"
      Yiqiang Xiang China Zhejiang University
      Yonggang Shen China Zhejiang University
      Margaux Geuzaine Belgium NatHaz Modeling Laboratory
      Marta Del Zoppo Italy University of Naples Federico II
      Francesco Foti Italy Politecnico di Milano
      Jian Dai Norway OsloMet – Oslo Metropolitan University
      Giacomo Lovane Italy Università degli Studi di Napoli "Federico II"

    • WP1.2.5 - Inspections monitoring and maintenance for constructions
       
      The WP will focus on how to best solve issues on inspections and continuous monitoring to answer to the maintenance problems, toward a more durable life for marine structures.

      Marco NovelloConvener
      Marco Novello

      First name Last name Country Affiliation
      Giovanni Massari Italy SAIPEM
      David Fernández-Ordóñez Switzerland fib
      Marco Novello Italy Sapeim
      Simon Fjendbo Denmark DTI - Danish Technological Institute
      Matteo Gastaldi Italy Politecnico of Milano
      Samindi Samarakoon Norway University of Stavanger
      Carola Corazza Italy HBK
      Claudia Gennaro Italy SISGEO
      Thibaut Lando France Antea Group
      Hadeel Maiah United Arab Emirates Gulf Survey
      Régis Blin Switzerland SMARTEC SA

    • WP1.2.6 - Innovative solutions for submerged and floating structures in marine environment
       
      The challenges posed by an evolving society and the growing attention towards sustainability and optimal exploitation of natural resources require the entire Civil Engineering community to rethink the conceptual paradigms underlying the design of structures and infrastructures serving the community, including environmental structures and, more specifically, structures in contact with rivers and seas, which also serve as a driver to the Blue Economy sector.

      The activities of WP 1.2.6 are placed in this line of renewal, aimed at the study of submerged and floating structures in marine environment: these structures pose a series of challenges, ranging from the choice (or even conception) of the building material, in light of the adverse and even aggressive environmental conditions, up to the accurate evaluation of the state of stress, from the perspective of the most modern probabilistic approaches to the problem.

      Patrick BamonteConvener
      Patrick Bamonte

      First name Last name Country Affiliation
      David Fernández-Ordóñez Switzerland fib
      Tor Ole Olsen Norway Olav Olsen a.s.
      Cheng Shanshan United Kingdom University of Plymouth
      Liberato Ferrara Italy Politecnico di Milano
      Patrick Bamonte Italy Politecnico di Milano
      Gordon Jackson United Kingdom Arup Energy

    First name Last name Country Affiliation
    Tor Ole Olsen Norway Olav Olsen a.s.
    David Fernández-Ordóñez Switzerland fib
    Stein Atle Haugerud Norway Dr. techn. Olav Olsen a.s.
    Arianna Minoretti Norway Statens vegvesen
    Coen Van der Vliet Netherlands Arcadis
    Satoshi Komatsu Japan -
    Mathias Egeland Eidem Norway Statens vegvesen (NPRA)
    Gordon Jackson United Kingdom Arup Energy
    Alberto Meda Italy University of Rome “Tor Vergata”
    Noelia Gonzalez Patiño Spain Ggravity-Dragados
    Aad van der Horst Netherlands -
    Federico Perotti Italy Politecnico di Milano
    Cheng Shanshan United Kingdom University of Plymouth
    Luca Martinelli Italy Politecnico di Milano - Dep. of Civil and Environmental Engineering
    Marco Novello Italy Sapeim
    Emilio Burgueño Argentina BCD Ingeniería
    Patrick Bamonte Italy Politecnico di Milano

  • TG1.3 - Buildings

    The use of concrete in Building Structures is widespread throughout the world and is generally well documented in the various national codes and standards. There are however a number of areas where guidance to designers is unclear or where significant interpretation is required. The aim of this task group is to review the current design and construction approaches used and to identify where additional guidance is required. Where it is felt necessary, the group will undertake the appropriate literature searches, review the available current guidance and produce new design advice and recommendations in the form of fib bulletins.

    The main goals of TG1.3 main goals are to:

    • identify how recent improvements in concrete knowledge and technology are, or could be, applied to building structures;
    • prepare state-of-the-art reports, guidelines and recommendations on the use of concrete in the design and construction of concrete buildings.

    Andrew TrubyConvener
    Andrew Truby

    • WP1.3.2 - Planning Movement Joints in Concrete Buildings
       
      For larger concrete buildings, movement joints are necessary to control the effects of drying shrinkage, temperature and creep. The positioning of movement joints is dependent on building shape, positioning of cores and shear walls and can be influenced by construction sequence and pour layout. The presence of joints is a fundamental factor in planning the stability system of buildings.
       
      There is a trend in hospitals and other buildings requiring hygienic conditions towards wider spacing of movement joints.
       
      The main goals of WP1.3.2 will be to create a reference document that will provide guidance on planning for movement and positioning of movement joints in concrete buildings, with particular emphasis on enclosed rather than open buildings.

      Jeremy WellsConvener
      Jeremy Wells

      First name Last name Country Affiliation
      Jeremy Wells United Kingdom WSP
      Jenny Burridge United Kingdom The Concrete Centre
      Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP
      Nadarajah Surendran United Kingdom PRAETER Engineering Ltd
      Richard Reynolds United Kingdom Buro Happold
      Andrew Truby United Kingdom Truby Stevenson Ltd
      Andrew Fraser United Kingdom Ramboll UK
      Christian Tygoer United Kingdom AKT II
      Phil Mansell United Kingdom Robert Bird
      Colin Banks United Kingdom Laing O’Rourke
      Keith Jones United Kingdom Ramboll
      Dave Cotton United Kingdom Atkins

    First name Last name Country Affiliation
    George Keliris United Kingdom Buro Happold Ltd.
    Steve Mckechnie United Kingdom Arup
    Jean Marc Jaeger France SETEC TPI
    Andrew Fraser United Kingdom Ramboll UK
    Pierre Leflour France Setec tpi
    Richard Reynolds United Kingdom Buro Happold
    Paulo Silva Lobo Portugal University of Madeira-Funchal
    Jenny Burridge United Kingdom The Concrete Centre
    Stefano Cammelli United Kingdom BMT Fluid Mechanics Ltd.
    Phil Mansell United Kingdom Robert Bird
    Colin Banks United Kingdom Laing O’Rourke
    Andrew Truby United Kingdom Truby Stevenson Ltd
    Nadarajah Surendran United Kingdom PRAETER Engineering Ltd
    Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP
    Mario Alberto Chiorino Italy Politecnico di Torino
    John Cairns United Kingdom Heriot-Watt University
    Kaare Dahl Denmark Rambøll
    David Fernández-Ordóñez Switzerland fib
    Jeremy Wells United Kingdom WSP
    Nick Zygouris Greece Lithos Consulting Engineers
    Fabrizio Palmisano Italy PPV Consulting Studio Palmisano Perilli Associati,

  • TG1.4 - Tunnels

    Transports, mining, water management, energy network development, combined with environmental concern, are leading to a large increase of tunneling works around the World. As structural concrete plays a primary role, among other materials, for the realization of those works, it appears that many issues related to the use of concrete in tunnels ought to be addressed, in order to allow and promote the best use of structural concrete in this field of civil engineering.

    The main goals of TG1.4 main goals are to:

    • identify how recent improvements in concrete knowledge and technology are, or could be, applied to tunnels, and how new developments in tunnel construction can rely upon concrete technologies;
    • prepare state-of-the-art reports, guidelines, recommendations for the use of concrete in tunnels design and construction.

    Alberto MedaConvener
    Alberto Meda

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Carola K. Edvardsen Denmark Cowi AS
    Alberto Meda Italy University of Rome “Tor Vergata”
    David Fernández-Ordóñez Switzerland fib
    Albert De la Fuente Spain Universitat Politècnica de Catalunya
    Giuseppe Tiberti Italy University of Brescia
    Sylvie Giuliani-Leonardi France Vinci Construction Grands Projets
    Sotiris Psomas United Kingdom Morgan Sindall
    ab van den bos Netherlands NLyse
    Sébastien Bouteille France Développement durable
    Fabio di Carlo Italy University of Rome Tor Vergata
    Colin Eddie United Kingdom CECL
    Michele Mangione United Kingdom ARUP
    Simone Spagnuolo Italy University of Rome "Tor Vergata"
    Panagiotis Spyridis Germany -

  • TG1.5 - Structural sustainability

    Recently, sustainability has been discussed with regard to materials, recycling and so on, relating to the reduction of CO2 emissions. However, sustainability has another aspect, for example, the structure, design and construction, which can lead to reducing energy consumption and non-renewable resources over the course of the full life-time of a structure. Minimising energy consumption and non-renewable resources, will be discussed in the context of environmental, social and economic aspects in order to provide sustainable solutions for our society. These discussions will be key for developing sustainable structures. This philosophy is defined as “Structural Sustainability”.

    The aim of this Task Group is to focus on minimising energy consumption and non-renewable resources during the life-time of structures from the structural point of view. Basically, the structures built using current specifications are durable. Therefore, structural sustainability should be defined as the difference from existing technologies to new ones in order to make structural sustainability clear. Examples of structural type, detailing, design, special construction techniques and so on for structural sustainability will be collected to publish a state-of-the-art report.


    Akio KasugaConvener
    Akio Kasuga

    First name Last name Country Affiliation
    Gordon Clark United Kingdom Consultant
    Milan Kalny Czech Republic Pontex Ltd.
    Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
    José Arizón Spain Aguacanal
    Kenichi Kata Japan Sumitomo Mitsui Consctruction Co, Ltd.
    João Almeida Portugal Instituto Superior Técnico Lisboa
    Ekkehard Fehling Germany IBB Fehling + Jungmann GmbH
    Michel Moussard France Consultant
    Alessandro Palermo United States University of California, San Diego
    David Fernández-Ordóñez Switzerland fib
    Petr Hajek Czech Republic Czech Technical University in Prague
    Philippe Vion France VINCI Construction Grands-Projets
    Hugo Corres Spain FHECOR Ingenieros Consultores
    Natividad Garcia Troncoso Ecuador Escuela Superior Politecnica del Litoral
    Khuyen Hoang Japan -
    Adriano Reggia Italy -
    Borja Regúlez Spain -
    Konrad Bergmeister Austria Univ. Bodenkultur
    Agnieszka Bigaj-van Vliet Netherlands TNO - Buildings, Infrastructures and Maritime
    Lara Rueda Spain -
    Nisrine Makhoul France -
    Panagiotis Spyridis Germany -

  • TG1.6 - History of concrete structures

    During the long history of CEB, FIP and now fib, the main objectives of their commissions, task groups and special activity groups were and are actual topics of research, application and dissemination.

    Construction history is a rapidly growing research field in the community of architects and civil engineers. The last conference on construction history took place in Paris in July 2012 and consisted of 66 sessions. Only two of them focused on concrete and concrete construction. Furthermore, none of the key lectures was related to concrete.

    The task group intends to set up a process which shall result in the publication of a series of bulletins covering the global history of structural concrete, from its first developments to the present situation.

    At the beginning, it is very important to organise the extremely broad field of historic research. It is suggested to start with a narrower approach, mainly with the collection of historic material. A broader approach implies the integration of concrete history within the time, including political, social, climatic, economic and ecological circumstances. This will require more time as well as the addition of historically educated experts.


    Manfred CurbachConvener
    Manfred Curbach
    Michel MoussardCo-Convener
    Michel Moussard

    First name Last name Country Affiliation
    Gordon Clark United Kingdom Consultant
    David Fernández-Ordóñez Switzerland fib
    Edwin Trout United Kingdom The Concrete Society
    François Cussigh France Vinci Construction
    Per Jahren Norway Consultant
    Patricia Garibaldi Germany Technische Univ. Dresden
    Rita Greco Italy Technical University of Bari - DICATECH
    Jean Michel Torrenti France Univ Gustave Eiffel
    Manfred Curbach Germany Technische Univ. Dresden
    Michel Moussard France Consultant
    F. Javier León Spain FHECOR - Ingenieros Consultores
    Luc Taerwe Belgium Ghent University
    Paul Acker France Consulting
    Ruben Paul Borg Malta University of Malta
    Pepa Cassinello Spain Universidad Politécnica de Madrid

  • TG1.7 - Construction of concrete structures

    The areas of interest have been developed from the viewpoint that the construction process has two main components: perception related aspects and process aspects. The perception related aspects comprise materials, workmanship, formwork and scaffolding, curing of concrete, concrete surface, testing and monitoring, high performance concrete, special technologies, specifications and training/education. The process related aspects comprise the construction process of concrete structures, quality management and life cycle management.

    The task group addresses state-of-the-art basic principles of the construction process of concrete structures at site. Furthermore, the task group reflects on anticipated developments, which could have a significant influence on construction. The objective is to develop awareness regarding aspects which have an impact on safety, serviceability, durability and environmental issues of concrete structures to be built on site, and to provide information as how to handle the basic principles. The output will be presented as internationally harmonised reports.


    Aad van der HorstConvener
    Aad van der Horst

    First name Last name Country Affiliation
    Fabrice Cayron France Bouygues Travaux Publics
    José Turmo Coderque Spain Universitat Politecnica de Catalunya
    Aad van der Horst Netherlands -
    Oliver Fischer Germany Technical University Munich
    David Fernández-Ordóñez Switzerland fib
    Gopal Srinivasan United Kingdom Arup
    Marcos Sanchez Ireland ARUP
    Héctor Bernardo Gutiérrez Spain Pontem Engineering Services
    Corin Walford United Kingdom -

  • TG1.8 - Concrete industrial floors

    Concrete is often used for industrial floors that are designed to withstand static and dynamic loads as well as the degradation caused by operations and the environment.

    Industrial floor must be properly designed for resisting point and distributed loads due to shelves and vehicles present on the floor. Seismic action transmitted by shelves must be considered in seismic areas.

    Shrinkage phenomena play a major role since they provoke early age cracks that can be controlled by contraction joints that are likely to damage due to wheel crossing.

    Another important issue is represented by the top finishing layer that had to be properly designed to resist abrasion.

    Main scope of the Task Group is to briefly describe the most important issues in concrete technology for industrial floors, give relevant references to important literature, describe important design premises, give guidance to potential improvements and maintenance. Some attention will be also devoted to refurbishing of existing floors.


    Giovanni A. PlizzariConvener
    Giovanni A. Plizzari

    First name Last name Country Affiliation
    Gianluigi Pirovano Italy -
    Valérie Pollet Belgium BBRI-Rilem
    Pedro Serna Ros Spain Univ. Politecnica de Valencia-Icitech
    Johan Silfwerbrand Sweden KTH Royal Institute of Technology
    Alberto Meda Italy University of Rome “Tor Vergata”
    Giovanni Plizzari Italy University of Brescia
    David Fernández-Ordóñez Switzerland fib
    Bryan Barragan France OCV Chambery International
    Klaus Holschemacher Germany HTWK Leipzig
    Amir Bonakdar United States Euclid Chemical – ACI
    Antonio Conforti Italy University of Brescia
    Carles Cots Corominas Spain BASF
    Albert De la Fuente Spain Universitat Politècnica de Catalunya
    Vinciane Dieryck Belgium BBRI
    Navneet Narayan India Bekaert
    Ralf Winterberg Malaysia Managing Director
    Raul Luis Zerbino Argentina LEMIT-CIC
    Francois JOUFFREY France -
    Todd Clarke Australia BarChip

 

First name Last name Country Affiliation
Josée Bastien Canada University Laval
Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
Gordon Clark United Kingdom Consultant
Giovanni Plizzari Italy University of Brescia
Aad van der Horst Netherlands -
Andrew Truby United Kingdom Truby Stevenson Ltd
Tor Ole Olsen Norway Olav Olsen a.s.
Alberto Meda Italy University of Rome “Tor Vergata”
Jim Forbes Australia Arcadis
Manfred Curbach Germany Technische Univ. Dresden
David Fernández-Ordóñez Switzerland fib
Michel Moussard France Consultant
Shoji Ikeda Japan Hybrid Research Inst. Inc.
Michel Virlogeux France Virlogeux Consulting
Hugo Corres Spain FHECOR Ingenieros Consultores
Thierry Delemont Switzerland T-ingenierie SA
Arianna Minoretti Norway Statens vegvesen

YMG: Young Members Group

Motivation

The fib believes that it is crucial that young professionals are given the opportunity to fully participate in the activities of the organisation. They are welcome to participate in the commissions and task groups and to become part of the decision bodies. Currently, however, most of the young members do not actively participate in the development of documents and in the decisions of the fib.

To solve this issue, the fib Presidium has approved the creation of an fib Young Members Group. All members of the Presidium have high expectations for the development of this group. The Young Members Group aims to build a framework that will allow young engineers to participate in the activities of the association and to bring their ideas to the working groups and the decision bodies.

Another important goal of the Young Members Group is to connect young members at an international level and contribute to fostering the next generation of the fib. Young members here include any young people studying and working in the field of structural concrete, regardless of nationality, occupation, gender, ethnicity, religions, disability or any other status.

Scope and objective

The main objectives of the fib Young Members Group include:

  • Encouraging and supporting young members to participate in professional activities in the commissions and task groups
  • Networking among young members
  • Enhancing the diversity and inclusiveness in the organization
  • Organising workshops and meetings tailored to young members' needs so that they can study the work of other engineers to improve one's own work and can improve the profession’s self-concept in the 21st century
  • Establishing connections with universities to encourage junior engineers to help engineering students and to be a source of knowledge for the students

In addition to the above objectives, the fib Young Members Group aims to establish connections with similar groups and associations in other countries.

Further links:

 

Marco MeloCommission Chair
Marcelo Melo
Ricky Tai
Deputy Chair
Ricky Tai
YMG Board Members
Ohno Motohiro (Japan) - Past chair Andri Setiawan (Indonesia) - Secretary
Marta Del Zoppo (Italy) Felipe García (Spain)
Natividad Garcia (Ecuador) Rodolfo Jr Mendoza (Philippines)
Ahmad Khartabil (UAE) Andrey Lapshinov (Russia)
Gaël Le Bloa (France) Joanna Agnieszka Markowska (Norway)
Ze'ev Navon (Israel) Benedict Olalusi (South Africa)
Chong Yong Ong (Malaysia) João Pacheco (Portugal)
Samanta Robuschi (Sweden) Ahmed Seyam (Palestine)
Vladyslav Shekhovtsov (Ukraine) Sandor Solyom (Hungary)
Nadine Pressmair (formerly Stoiber) (Austria) Nikola Tošić (Serbia)
Patrick Valeri (Switzerland)  Graham Webb (United Kingdom)

There are two working groups within the YMG that focuse on Webinars and Podcasts:

WORKING ON TG10.3 - Examples on the Model Code PODCASTS wORKING GROUP
Petar Bajic Patrick Valeri - Convener
Lígia Doniak Nadine Pressmair
André Furtado Nikola Tošić
Irene Josa Graham Webb
Juan Lozano  
Marcelo Melo  
Motohiro Ohno  
Andri Setiawan  
Nikola Tošić  
Patrick Valeri  
Szabolcs Szinvai  

  • Mentoring programme

    The fib mentoring programme brings together experienced professionals keen to share their knowledge and network, and young professionals starting their professional career and who are in need of advice from knowledgeable engineers.

    • Who is it for?

    To take part as a mentee, individuals should be fib members and members of the fib Young Members Group. They should either be finishing their studies or starting out their career as an engineer.

    To take part as a mentor, individuals should be fib members, above 40 years old, have 5 years of professional experience in structural concrete and have been a member of the fib for 5 years or more. fib Fellows are particularly encouraged to become mentors.

    • How does it work?

    Mentoring is a cooperative partnership in which seasoned professionals share their experience and knowledge with less experienced young professionals. Both parties stand to gain from this partnership.

    The duration of mentoring is one year but may be renewed if both parties agree. The mentoring agreement is a starting point for mentees and mentors to establish their mutual goals and plan their meetings.

    • How to apply?

    If you wish to apply as a mentee, please contact the fib Secretariat.

 

 

First name Last name Country Affiliation
David Fernández-Ordóñez Switzerland fib
Nikola Tošić Spain Universitat Politècnica de Catalunya
Patrick Valeri Lorenzo Switzerland Dr. Lüchinger+Meyer Bauingenieure AG
Motohiro Ohno Japan The University of Tokyo
Dmitry Kuzevanov Russian Federation NIIZHB
Vladyslav Shekhovtsov Ukraine Odesa State Academy of Civil Engineering and Architecture
Raffaele Cantone Switzerland -
Graham Webb United Kingdom WSP
Gael Le Bloa France HILTI France
Anass El Farissi France University of La Rochelle
Marco Teichgraeber Poland -
Mladena Luković Netherlands -
Elena Ciampa Italy University of Sannio
Andrey Lapshinov Russian Federation "Moscow State University of Civil Engineering mgsu.ru"
Alexandre Mathern Sweden -
Jemma Ehsman Australia Rio Tinto - Dampier Salt
Marta Del Zoppo Italy University of Naples Federico II
Isabella Giorgia Colombo Italy Politecnico di Milano
Maria Teresa De Risi Italy University of Naples Federico II
Lorenzo Radice Italy DSC ERBA Engineering
Marco Rampini Italy Politecnico di Milano
Vittoria Ciotta Italy University of Naples Federico II
Diego Gino Italy Politecnico di Torino
Costantino Menna Italy University of Naples Federico II
Fuyuan Gong China Zhejiang University
Đorđe Čairović Czech Republic -
Peter Paulik Slovakia Slovak University of Technology in Bratislava
Fangjie Chen Australia -
Debadri Som Canada Graduate Student/Research Assistant
Oladimeji Olalusi South Africa University of Kwazulu-Natal
João Nuno Pacheco Portugal CERIS/ IST, University of Lisbon
saied kashkash Hungary -
John Kolawole United Kingdom Loughborough University
Asaad Biqai Lebanon Beirut Arab University
Jakub Kraľovanec Slovakia University of Žilina
Munir Basmaji United Arab Emirates -
Ahmad Khartabil United Arab Emirates Transgulf Readymix Concrete Co.
Alireza Tabrizikahou Poland PhD candidate at Poznan University of Technology
Rui Valente Portugal Universidade do Porto
Zeev Navon Israel -
Samanta Robuschi Sweden Chalmers University
Andrija Radović Serbia Faculty of Technical Sciences, University of Priština in Kosovska Mitrovica
Özgür Yurdakul Czech Republic Univerzita Pardubice
Samuel Halim Indonesia -
Bessong Tambe MIET Cameroon The Chartered Institute Of Building CIOB
Natividad Garcia Troncoso Ecuador Escuela Superior Politecnica del Litoral
Mahshid Abdoli Iran, Islamic Republic of -
Giovanni Volpatti Switzerland Bluewin
Nandhu Prasad India -
Irene Josa United Kingdom University College London (UCL)
Milena Janković Montenegro -
Jdidi DAOUD Tunisia -
Ingrid Irreno Brazil -
Pavel Ostrovsky Finland Ramboll Finland
Abhishek Chaudhari India Research Scholar
Nadine Pressmair (formerly Nadine Stoiber) Austria University of Natural Resources and Life Sciences
Mouna BOUMAAZA France Vinci Construction
Andrea Monserrat López Spain Universitat Politècnica de Catalunya
Petar Bajic Spain -
Jushan Babar Bangladesh Chittagong University of Engineering & Technology (CUET), Chittagong, Bangladesh
Marcelo Melo Brazil Casagrande Engenharia
Orhun Kalyoncu Turkey Researcher
André Abreu Brazil -
Manoj N India VNIT
Xianlin Wang Switzerland Ecole Polytechnique Fédérale de Lausanne (EPFL)
Kasperi Pirttikoski Finland Ramboll Finland
Mehboob Rasul Japan Technology Development Division
Jules Smits Belgium KU Leuven - De Nayer Campus
Peter Gappmaier Austria -
Daniel Trento Italy -
Giorgio Mattarollo Italy Carinthia University of Applied Sciences
Konrad Szczepański Poland -
Eryk Goldmann Poland Silesian University of Technology
Sevin Yaren Aytepe Netherlands TU Delft
Abdullah Niğdelioğlu Turkey -
Mohamed Nafees Mohamed Nushan Pakistan Washington Accord Affiliation, Registered
Swapnil Ghodke India -
Mohammad Sulaiman Dawood United States -
André Furtado Portugal Instituto Superior Tecnico, Universidade de Lisboa
Eduardo Sanchez Ecuador Estudiante
Pietro Mazzuca Italy University of Calabria
Shana Van Hout Belgium -
Juan Mauricio Lozano Valcarcel Germany Technical University of Munich
Qifan Ren Portugal University of Lisbon
Ali Salmani Iran, Islamic Republic of Faculty of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Fred Ferreira da Conceição Brazil -
Rafaela Eckhardt Brazil -
Szabolcs Szinvai Hungary BME
Rekia Zouini Algeria -
Ligia Doniak Brazil -
Emilio Burgueño Argentina BCD Ingeniería
Thilo Schmidt Germany Bochum University of Applied Sciences | Institute of Concrete Structures
Khori Browne Germany -
Jovan Markovic Norway MSc Structural Engineer
Hilal Khan Pakistan National University of Sciences & Technology (NUST)
Minghong Qiu Japan -
Ricky Tai Netherlands -
Monica Santamaria-Ariza Portugal University of Minho
Jari Laahanen Finland -
praveen Koyyana India -
Arman koç Turkey -
FELIPE LOPES Brazil -
Ouijdane Qacami France -
Armando Cerqueira Sobrinho Brazil -
mohamed nasser France -
Mina Fakeh Canada -
Yannick Igor Fogue Djombou France -
Fahmida Pritu China -

SAG: Sustainability

Motivation

In 2020, many countries, including the EU and Japan, declared their commitment to carbon neutrality by 2050. This movement has gained momentum, particularly after the COVID-19 pandemic, with over 100 countries now involved. Despite the significant CO2 emissions of the concrete sector, concrete remains an essential material for human prosperity. To achieve sustainability goals, the world will require concrete structures with minimal CO2 emissions in the near future. Clients and taxpayers may begin to demand that designers, constructors, and owners quantify the CO2 emissions of their projects properly. In this context, the fib must be prepared to lead the change in the structural concrete community. It is essential that the fib shares its knowledge and provides proper methodological approaches to enable a reliable assessment of the environmental impact of concrete structures.

Scope and objective of technical work

To achieve its goal, the SAG will focus on three objectives:

  • Establishing a comprehensive database of environmental impact data for structural materials used in concrete structures. The SAG will prioritize data related to the construction stage, but will also develop a strategy to manage data from the operational and maintenance stages, as well as the dismission stage. The data platform will need to be continuously maintained by collecting new data and updating existing data, with a focus on different lifecycle stages in different geographical areas. The SAG will source this data from manufacturers, designers, associations, and other institutions.
  • Defining a reliable methodological approach to support designers in quantifying the environmental impact of concrete structure projects. The methodology will be based on LCA principles and focus on the requirements and performance of structures. The approach will be easily implementable and usable in the design process, with a common set of indicators and proper metrics established to compare data and allow for the definition of benchmarks. The methodology may also identify a Product Category Rule, according to the ISO 14000 series, to enable designers to produce EPDs for individual concrete structures.
  • Identifying the best tools and knowledge to guide the decision-making process towards optimal structural solutions in terms of environmental impact while still satisfying expected structural and functional performances. The SAG will suggest proper optimization strategies and procedures and identify best practices for different structures, in various market conditions and geographical areas.

 

Domenico AsproneCommission Chair
Domenico Asprone
Deputy Chair
TBT

 

Figure1 Road map

Figure 1. Timeframe for carbon neutrality by 2050.

 

  • TG.SAG1.1 - fib Database

    The TG.SAG.1 aim to establish a comprehensive database of environmental impact data for structural materials used in concrete structures. The TG.SAG.1 will prioritize data related to the construction stage, but it will also develop a strategy to manage data from the operational and maintenance stages, as well as the dismission stage. The data platform will need to be continuously maintained by collecting new data and updating existing data, with a focus on different lifecycle stages in different geographical areas. The TG.SAG.1 will source this data from manufacturers, designers, associations, and other institutions.


    Costantino MennaConvener
    Costantino Menna

    First name Last name Country Affiliation
    Costantino Menna Italy University of Naples Federico II
    David Fernández-Ordóñez Switzerland fib
    Domenico Asprone Italy University of Naples Federico II
    Kasperi Pirttikoski Finland Ramboll Finland
    Ruben Paul Borg Malta University of Malta
    Chiara Passoni Italy University of Bergamo
    Elisabetta Palumbo Italy -

  • TG. SAG1.2 - Sustainable Concrete Structures

    The TG.SAG.2 aims to contribute to global carbon neutrality by 2050 through the further development of design practices for concrete structures. The objectives of TG.SAG.2 are:

    • Identifying the best practices and optimal structural solutions in terms of environmental impact, fit for various market conditions and geographical areas, while exploring a full range of material, structural, and technological innovations to enhance the sustainability of concrete structures.
    • Enabling performance-based design of sustainable structures in a life cycle perspective and consistently implementing the fib Model Code safety philosophy across a wide range of innovative solutions
    • Identifying the best tools to guide the decision-making process towards optimal structural solutions in terms of environmental impact, while meeting the desired structural, functional, and economic performance requirements

    Through the dissemination of best practices and methodologies, we aim to facilitate knowledge exchange and foster collaboration among stakeholders in the construction industry. Through enabling performance-based design of concrete structures, we will offer a more rational, efficient, and tailored approach to structural engineering, enabling designers to customize the design objectives based on the specific needs of the structure and its intended use. Through integrating multiple aspects of sustainability into the decision-making process, we will guide designers towards optimal structural solutions that minimize negative environmental consequences while meeting the necessary structural, functional and economic performance criteria. Ultimately, this will empower industry stakeholders to embrace innovative solutions for concrete structures and enable the collective commitment of industry professionals towards the goal of creating sustainable concrete structures that contribute to a more sustainable built environment.

    The TG.SAG.2 is complementary to TG.SAG.1 and will carry out its work in a collaborative process involving all relevant fib Commissions and Task Group. Additionally, interaction will be sought with the relevant expert groups within RILEM and JCSS, and the outcomes of TG.SAG.2 activities will be shared with GLOBE (Global Consensus on Sustainability in the Built Environment).

    Agnieszka BigajConvener
    Agnieszka Bigaj

    First name Last name Country Affiliation
    Agnieszka Bigaj-van Vliet Netherlands TNO - Buildings, Infrastructures and Maritime
    David Fernández-Ordóñez Switzerland fib
    Kasperi Pirttikoski Finland Ramboll Finland
    Ruben Paul Borg Malta University of Malta
    Petr Hajek Czech Republic Czech Technical University in Prague
    Beatrice Belletti Italy Univ. degli Studi di Parma - Engineering and Architecture
    Marco Davolio Italy Politecnico di Milano
    Davide diSumma Belgium Ghent University
    Liberato Ferrara Italy Politecnico di Milano
    Domenico Asprone Italy University of Naples Federico II
    Karen Scrivener Switzerland EPFL
    Giovanni Plizzari Italy University of Brescia
    Diego Lorenzo Allaix Netherlands TNO Neitherlands
    Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
    Albert De la Fuente Spain Universitat Politècnica de Catalunya
    Arianna Minoretti Norway Statens vegvesen
    Carola K. Edvardsen Denmark Cowi AS
    Francesca Marsili Germany Helmut-Schmidt-University/ University of the Federal Armed Forces Hamburg
    Irene Josa United Kingdom University College London (UCL)
    Jean Michel Torrenti France Univ Gustave Eiffel
    Marco di Prisco Italy Politecnico di Milano
    Michael Haist Germany Leibniz Universität Hannover
    Robby Caspeele Belgium Ghent University
    Søren Hansen Denmark COWI SA
    Stefanie Von Greve-Dierfeld Switzerland Federal Roads Office ASTRA
    Stuart Matthews United Kingdom Matthews Consulting
    Sylvia Kessler Germany Helmut-Schmidt-University/ University of the Federal Armed Forces Hamburg
    Tomas Plauska Netherlands Consolis
    Venkataramana Heggade India Indian National Academy of Engineers
    ab van den bos Netherlands NLyse
    Harald Müller Germany SMP Ingenieure im Bauwesen GmbH
    Jan Bujnak Slovakia Peikko Group
    José Campos e Matos Portugal University of Minho
    Jörg Unger Germany Bundesanstalt für Materialforschung und -prüfung, BAM
    Alessandra Marini Italy University of Bergamo
    Alfred Strauss Austria BOKU University
    Cyrille Dunant United Kingdom Cambridge University
    Davide Lavorato Italy Università Roma Tre, Italia
    Konrad Bergmeister Austria Univ. Bodenkultur
    Ladin Camci United Kingdom CARES (Certification Authority for Reinforcing Steels)
    Patrizia Bernardi Italy University of Parma
    Simone Spagnuolo Italy University of Rome "Tor Vergata"
    Simone Stürwald Switzerland Private
    Tor Martius-Hammer Norway SINTEF AS
    Jaime Gálvez Ruiz Spain Universidad Politecnica de Madrid
    Andrew Minson United Kingdom GCCA
    Vanderley John Brazil USP
    Chiara Passoni Italy University of Bergamo
    Alice Sirico Italy -
    Giovanni Muciaccia Italy Politecnico di Milano
    Vazul Boros Germany AIT Austrian Institute of Technology
    Rebecca Ammann Switzerland -
    Adriano Reggia Italy -
    Alberto Meda Italy University of Rome “Tor Vergata”
    Camillo Nuti Italy Università degli Studi Roma Tre
    David Ruggiero Switzerland EPFL ENAC
    Elisabete Teixeira Portugal -
    Fabrizio Moro Switzerland -
    Fatemeh Jalayer Italy University of Naples Federico II
    Francesco Romeo Italy -
    Giulio Zani Italy Politecnico di Milano
    Jochen Köhler Norway NTNU
    Martin Cyr France Université de Toulouse
    Rebecca Gravina Australia The University of Queensland
    Rob Vergoossen Netherlands Royal HaskoningDHV
    Silvia SANTINI Italy -
    Stephen Foster Australia UNSW Australia
    Tamon Ueda China Shenzhen University
    Thomas Blanksvärd Sweden -
    Vittoria Borghese Italy Università degli studi roma tre
    Elisabetta Margiotta Nervi Belgium Fondation Pier Luigi Nervi
    Jaakko Yrjölä Finland Peikko
    Martin Poljansek Italy Joint Research Centre in Ispra
    Matteo Spada Switzerland ZHAW
    Matthieu Bertin Ireland Ecocem
    Auli Lastunen Finland -
    Ramon Hingorani Norway SINTEF
    Eline Vereecken Belgium Hasselt University
    José Rui Pinto Portugal Krear Construção Industrializada S.A

First name Last name Country Affiliation
Domenico Asprone Italy University of Naples Federico II
David Fernández-Ordóñez Switzerland fib
Kasperi Pirttikoski Finland Ramboll Finland
Camillo Nuti Italy Università degli Studi Roma Tre
Sylvia Kessler Germany Helmut-Schmidt-University/ University of the Federal Armed Forces Hamburg
Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd
Albert De la Fuente Spain Universitat Politècnica de Catalunya
Ladin Camci United Kingdom CARES (Certification Authority for Reinforcing Steels)
Agnieszka Bigaj-van Vliet Netherlands TNO - Buildings, Infrastructures and Maritime
Jaime Gálvez Ruiz Spain Universidad Politecnica de Madrid
Stefanie Von Greve-Dierfeld Switzerland Federal Roads Office ASTRA
Simone Stürwald Switzerland Private
Liberato Ferrara Italy Politecnico di Milano
Tor Martius-Hammer Norway SINTEF AS
Venkataramana Heggade India Indian National Academy of Engineers
Fulvio Parisi Italy University of Naples Federico II
Costantino Menna Italy University of Naples Federico II
Tomas Plauska Netherlands Consolis
Fabrizio Moro Switzerland -
Adriano Reggia Italy -
Silvia SANTINI Italy -
Patrizia Bernardi Italy University of Parma
Beatrice Belletti Italy Univ. degli Studi di Parma - Engineering and Architecture
Ruben Paul Borg Malta University of Malta
ab van den bos Netherlands NLyse
Harshavardhan Subbarao India Construma Consultancy Pvt. Ltd.
José Américo Salvador Filho Brazil -

Privacy

  1. Collection and use of personal information
  2. What personal information the fib collects
  3. How the fib uses your personal information
  4. Collection and use of non-personal information
  5. Cookies and other technologies
  6. Disclosure to third parties
  7. Service providers
  8. Others
  9. Protection of personal information
  10. Third-party sites and services
  11. GDPR compliance
  12. Privacy questions

1. Collection and use of personal information

Personal information is data that can be used to uniquely identify or contact a single person.

You may be asked to provide your personal information anytime you are in contact with the fib. The fib and its affiliate member may share this personal information with each other and use it consistent with this Privacy Policy. They may also combine it with other information to provide and improve the fib's products, services, content, and advertising.

Following are some of the types of personal information the fib may collect and how the fib may use it.

2. What personal information the FIB collects

  • You agree that pictures taken at the fib meetings or the fib events can be used for the fib website or fib publications and news.
  • When you upload a picture you agree that the fib will be able to use the picture for its website or any other publication related to the fib.
  • When you purchase a product, download a product, register for an event, or participate in an online survey, the fib may collect a variety of information, including your name, mailing address, phone number, email address, contact preferences.

3. How the FIB uses your personal information

  • The fib may also use personal information for internal purposes such as auditing, data analysis, and research to improve the fib’s products, services, and customer communications.
  • From time to time, the fib may use your personal information to send important notices, such as communications about purchases and changes to the fib terms, conditions, and policies. Because this information is important to your interaction with the fib, you may not opt out of receiving these communications.
  • The personal information fib collects allows the fib to keep you posted on its latest product announcements and upcoming events. It also helps the fib to improve its services, content, and advertising. If you don’t want to be on the fib mailing list, you can opt out anytime by updating your preferences.

4. Collection and use of non-personal information

The fib also collects non-personal information − data in a form that does not permit direct association with any specific individual. The fib may collect, use, transfer, and disclose non-personal information for any purpose. The following are some examples of non-personal information that the fib collects and how the fib may use it:

  • The fib may collect information such as occupation, language, zip code, area code, unique device identifier, location, and the time zone where the fib product is used so that the fib can better understand customer behavior and improve its products, services, and advertising.
  • The fib also may collect information regarding customer activities on its website. This information is aggregated and used to help the fib provide more useful information to its customers and to understand which parts of its website, products, and services are of most interest. Aggregated data is considered non-personal information for the purposes of this Privacy Policy.

If the fib does combine non-personal information with personal information the combined information will be treated as personal information for as long as it remains combined.

5. Cookies and other technologies

The fib’s website, online services, interactive applications, email messages, and advertisements may use “cookies” and other technologies such as pixel tags and web beacons. These technologies help the fib better understand user behavior, tell the fib which parts of its website people have visited, and facilitate and measure the effectiveness of advertisements and web searches. The fib treats information collected by cookies and other technologies as non-personal information. However, to the extent that Internet Protocol (IP) addresses or similar identifiers are considered personal information by local law, the fib also treats these identifiers as personal information. Similarly, to the extent that non-personal information is combined with personal information, the fib treats the combined information as personal information for the purposes of this Privacy Policy.

The fib also uses cookies and other technologies to remember personal information when you use its website, online services, and applications. The fib’s goal in these cases is to make your experience with the fib more convenient and personal. For example, knowing your country and language helps the fib to provide a customized and more useful shopping experience.

If you want to disable cookies and you’re using the Safari web browser, go to Safari preferences and then to the Security panel to disable cookies. For other browsers, check with your provider to find out how to disable cookies. Please note that certain features of the fib website will not be available once cookies are disabled.

6. Disclosure to third parties

At times the fib may make certain personal information available to fib National Member Groups or Conference organisers that work with the fib to provide products and services, or that help the fib market to customers.

7. Service providers

The fib does not share personal information with companies who provide services of any kind.

8. Others

It may be necessary − by law, legal process, litigation, and/or requests from public and governmental authorities within or outside your country of residence − for the fib to disclose your personal information. The fib may also discloses information about you if the fib determines that for purposes of national security, law enforcement, or other issues of public importance, disclosure is necessary or appropriate.

The fib may also discloses information about you if the fib determines that disclosure is reasonably necessary to enforce its terms and conditions or protect its operations or users.

9. Protection of personal information

The fib takes precautions — including administrative, technical, and physical measures — to safeguard your personal information against loss, theft, and misuse, as well as against unauthorized access, disclosure, alteration, and destruction.

The fib online services such as the fib Online Store use Secure Sockets Layer (SSL) encryption on all web pages where personal information is collected. To make purchases from these services, you must use an SSL-enabled browser such as Safari, Firefox, or Internet Explorer. Doing so protects the confidentiality of your personal information while it’s transmitted over the Internet.

10. Third-party sites and services

The fib websites, products, applications, and services may contain links to third-party websites, products, and services. The fib's products and services may also use or offer products or services from third parties. Information collected by third parties, which may include such things as location data or contact details, is governed by their privacy practices. The fib encourages you to learn about the privacy practices of those third parties.

11. GDPR compliance

The fib enforces the application of the European General Data Protection Regulation (GDPR (http://ec.europa.eu/justice/data-protection/reform/index_en.htm)).

Therefore, the fib does the following tasks:

  • The fib adopts Privacy by Design and by Default. According to the GDPR, it consists in particular of:
    • minimising the processing of personal data
    • pseudonymising personal data as soon as possible
    • transparency with regard to the functions and processing of personal data
    • enabling the data subject to monitor the data processing (on request)
    • enabling the controller to create and improve security features
  • Set up a process in case of data breaches
  • The fib gives the users the rights regarding their data:
    • Right of access
    • Right to be informed
    • Right to erase (on request)
    • Right of rectification
    • Right to object
    • Right to restrict processing
    • Right not to be subject to automated decision-making
    • Right to data portability, if needed.
  • The fib seeks consent in a lawful manner:
    • Do not use long illegible terms and conditions full of legalese
    • Request consent separately from other terms and conditions
    • Names the organisation and third parties
    • Makes sure people opt in
    • Avoid consent by default or pre-ticked boxes
    • Verify the individuals age for students and young engineers
    • Provide granular options to consent to nonessential processing, if needed
    • Keep records of when and how the individual gave their consent
  • Although it is not strictly needed, as the fib does not process regularly large-scale processing of sensitive data, there is a person in the fib secretariat that is responsible for the data.
  • Document the personal data that it holds

12. Privacy questions

If you have any questions or concerns about the fib’s Privacy Policy or data processing, please contact the fib at This email address is being protected from spambots. You need JavaScript enabled to view it.

The fib may update its Privacy Policy from time to time. When the fib changes the policy in a material way, a notice will be posted on our website along with the updated Privacy Policy.

Code of Conduct

    1. Preamble
    2. Objectives of the fib
    3. Code of Conduct
    4. Reporting Procedure

fib bylaw 1: Code of Conduct

 

 

 

 

1. Preamble

The fib is an independent association of construction professionals dedicated to advancing the field of concrete structures. Its members include concrete users, researchers, designers, engineers, and experts from academia, design practices, constructors, and ownership sectors. Formed in 1998 from the merger of the International Federation for Prestressing (FIP) and the Euro-International Committee for Concrete (CEB) – both established in the early 1950s – the fib operates as a not-for-profit organisation with over 40 national member groups and around 1,000 corporate and individual members.

 

 

 

2. Objectives of the fib

According to the fib Statutes, the objectives of the association are “to develop at the international level the study of scientific and practical matters in order to advance the technical, economic, aesthetic and environmental performance of concrete construction”.

Of particular importance is the fib’s work in developing scientific and practical knowledge to enhance the technical, social, economic, and environmental performance of concrete structures. The fib’s efforts align with the United Nations Sustainable Development Goals and related initiatives advanced by other organisations.

 

 

 

3. Code of Conduct

This policy establishes standards for all members and participants in fib activities. By participating in an fib meeting or event, or in communications between members on fib matters – whether in person, in writing, or via email – all members and participants agree to adhere to this code.

Members and participants are expected to communicate professionally and constructively, both in person and online, treating all individuals with dignity, respect, and fairness.

In good faith, fib members and participants shall include and encourage diverse perspectives throughout the planning, operations, and execution of fib events and activities.

Members and participants shall not engage in any form of harassment or discrimination toward other attendees, members, guests, or staff. Harassment includes, but is not limited to, offensive verbal or written comments; negative, aggressive, or disrespectful behaviour; and actions based on gender, age, sexual orientation, gender identity, disability, physical appearance, race, ethnicity, religion, or other group identities. Additionally, harassment encompasses intimidation, stalking, unwelcome photography or recording, disruptions, and unwelcome physical contact or sexual attention.

 

 

 

4. Reporting Procedure

Any individual who is the subject of harassment or other unacceptable behaviour, or any individual who has witnessed such an incident, should notify the fib President or a fib Secretary General immediately upon occurrence of an incident, or as soon thereafter as practicable under the circumstances and This email address is being protected from spambots. You need JavaScript enabled to view it. a written summary of the incident to the fib Secretariat. Upon receipt of a report of harassment or other unacceptable behaviour, the fib will investigate and take action in accordance with fib bylaw 1: “Code of Conduct Inquiry and Review Procedure”.

 

Approved by the Presidium 7 November, 2024

fib postal address

Ch. du Barrage, Station 18
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

News

Follow us on
           

Join the fib

Join the fib