• Latest news

    Latest news

  • Latest news

    Latest news

Structural Concrete, Vol. 4, no. 3, September 2003

Durability of concrete structures

Catherine French, University of Minnesota, USA

This paper provides a brief overview of Session 8 'Durability of Concrete Structures' of the fib 2002 congress on Concrete Structures in the 21st Century, which was held in Osaka on 13-19 October 2002. The keynote speaker of the session, Dr Odd E. Gjørv, Professor and Head of the Department of Building Materials at the Norwegian University of Science and Technology at Trondheim, has conducted concrete research for more than 40 years. His research has focused on a broad range of topics related to the durability of reinforced and prestressed concrete structures in severe environments. His paper addressed durability and service-life issues of concrete structures. In addition to the keynote address, more than 50 papers were considered for this session, covering topics in the following areas: general issues related to concrete serviceability and durability, corrosion of reinforcement, and grouting of post-tensioned systems, as well as several case studies. The highlights of some of the papers are described here.

Structural Concrete, Vol. 4, no. 2, June 2003

Structural behaviour of steel fibre reinforced concrete

I. Kovacs, College Faculty of Technology, Department of Civil Engineering, University of Debrecen, Hungary
G. L. Balazs, Budapest University of Technology and Economics, Department of Construction Materials and Engineering Geology, Hungary

Results of an experimental study on 21 fibre reinforced concrete beams indicate that steel fibres do not only increase shear capacity but also provide substantial post-peak resistance and ductility in conventionally reinforced beams as well as in prestressed pretensioned concrete beams. The tests were carried out on 2m long beam specimens reinforced with longitudinal bars and fibres. Test variables were amount and type of fibres, amount of stirrups and type of longitudinal reinforcement (prestressed or non-prestressed).

Structural Concrete, Vol. 4, no. 2, June 2003

Structural behaviour of steel fibre reinforced concrete

I. Kovacs, College Faculty of Technology, Department of Civil Engineering, University of Debrecen, Hungary
G. L. Balazs, Budapest University of Technology and Economics, Department of Construction Materials and Engineering Geology, Hungary

Results of an experimental study on 21 fibre reinforced concrete beams indicate that steel fibres do not only increase shear capacity but also provide substantial post-peak resistance and ductility in conventionally reinforced beams as well as in prestressed pretensioned concrete beams. The tests were carried out on 2m long beam specimens reinforced with longitudinal bars and fibres. Test variables were amount and type of fibres, amount of stirrups and type of longitudinal reinforcement (prestressed or non-prestressed).

Structural Concrete, Vol. 4, no. 1, March 2003

The power of prestressing

Jiri Strasky, Technical University of Brno, and Strasky Husty and Partners, Brno, Czech Republic

The idea of prestressing - a product of the twentieth century - has announced the single most significant new direction in structural engineering of any period in history. It put into the hands of the designer an ability to control structural behaviour and, at the same time, it enabled the designer - or forced the designer - to think more deeply about the construction. Moreover, the idea of prestressing opened up new possibilities for a form that influences the general culture. To focus on that fact, and to narrow the scope, the paper will consider bridges only, even though prestressing has broad applications to all kinds of buildings. However, the idea of prestressing arose out of bridge design, and its most impressive forms, from a purely engineering viewpoint, have appeared in bridges.

Structural Concrete, Vol. 4, no. 1, March 2003

The influence of silica fume on the factors affecting the corrosion of reinforcement in concrete: a review

Rajaiah Selvaraj, Central Electrochemical Research Institute, Tamilnadu, India
Srinivasan Muralidharan, Central Electrochemical Research Institute, Tamilnadu, India
Seshadri Srinivasan, Central Electrochemical Research Institute, Tamilnadu, India

The effect of silica fume in concrete is reviewed from the point of view of chloride diffusion, carbonation, oxygen diffusion, the pH of the pore solution and electrical resistivity, as they are the main parameters influencing the corrosion phenomenon in concrete.

fib postal address

Case postale 88
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

 Follow us on
        

Join the fib

Join the fib